图4 - 考虑使用PHEV而不是CVS,CO 2发射(每天千荷菌)的减少。注释1:CO 2基线基于CV的发射。注释:不列颠哥伦比亚省(BC);艾伯塔省(AB);萨斯喀彻温省(SK);安大略省(ON);魁北克(QC);新斯科舍省(NS);爱德华王子岛(PEI);纽芬兰和拉布拉多(NL)。11.28 17.76
摘要 — 本文利用同时连接到光伏电池 (PV) 和电网的电动汽车 (EV)。在微电网中,电动汽车 (EV) 的电池用作电源,在电力需求高峰时为电网供电。电动汽车可以通过储存多余的太阳能并在高需求时段将其返回电网来帮助调节电网。本文提出了一种新的微电网架构,使用屋顶太阳能系统、电池电动汽车 (BEV)、电网连接逆变器、升压转换器、双向半桥转换器、输出滤波器(包括 L、LC 或 LCL)和变压器。本文说明了并建模了该微电网的主要部分,并对其运行进行了模拟。此外,模拟结果探讨了 BEV 的充电和放电场景。关键词——光伏到汽车,光伏到电网,电网到汽车,汽车到电网,微电网,需求侧管理I. 引言毋庸置疑,世界人口每年都会持续增长,从而导致地球上的汽车数量增加。问题是石油和天然气无法满足需求,因此唯一的选择就是电力和各种类型的电动汽车 [1]。此外,电动汽车 (EV) 可以通过降低空气污染水平造福环境 [2]。电池电动汽车 (BEV)、插电式混合动力电动汽车 (PHEV) 和混合动力电动汽车 (HEV) 是市场上的三种电动汽车类型 [3]。BEV 和 PHEV 都由电网供电,并且 BEV 和 PHEV 中的电池数量有所增加。典型的 BEV 电池容量从 40 到 80 kWh 不等,而现在有些电池容量高达 200 kWh [4]。使用可再生能源为电动汽车充电是减少汽车排放并提供清洁电力供应的绝佳方式。电动汽车作为分散式储能系统
大型牵引电池组为电动机供电。它必须插入墙上插座或充电设备,称为可选车辆供电设备 (EVSE)。另一方面,混合动力电动汽车 (HEV) 由内燃机和一个或多个电动机供电,这些电动机使用存储在电池中的能量。与 BEV 不同,HEV 不能插入电源为电池充电。相反,电池通过再生制动 1 和内燃机充电。电动机提供的额外动力可能允许使用较小的发动机,而电池还可以为辅助负载供电,从而减少停止时的发动机空转。这些功能共同有助于提高燃油经济性,而不会牺牲性能。插电式混合动力电动汽车 (PHEV) 使用电池为电动机供电,并使用另一种燃料(例如汽油)为内燃机供电。内燃机可以使用墙上插座、充电设备或再生制动为 PHEV 电池充电。车辆通常使用电力运行,直到电池几乎耗尽,此时汽车会自动切换到使用内燃机。 (有关 BEV、HEV 和 PHEV 关键部件的详细比较,请参阅附件 A)。
资料来源:Global X Charting 2024 年颠覆性汽车报告;数据截至 2023 年 7 月 12 日;内燃机汽车 (ICE)。数据包括纯电动汽车 (BEV)、插电式混合动力汽车 (PHEV) 和所有类型的电动汽车 (EV)。预测依据 Rho Motion 于 2023 年 12 月 1 日发布的报告;预测数据来自 Rho Motion 和贝恩;预测仅适用于乘用车细分市场;EV:电动汽车
在 EPRI,我们坚信我们的公益使命是为社会提供广泛的技术选择,以安全、可靠、经济实惠和环保的方式发电、输送和使用电力。展望未来,实现这一目标的最佳方式是通过研究、开发和示范方面的合作计划,使社会能够应对全球气候变化和水资源可持续性等极其重要的环境挑战。本期期刊包括关于两种重要的零碳发电技术的文章:可再生能源和核能。之前的版本涵盖了能源效率、先进煤炭、碳捕获和封存以及插电式混合动力汽车 (PHEV) 等技术。EPRI 最近的 Prism 分析(参见 www.epri.com)得出结论,社会将需要上述所有技术,以使电力部门能够满足日益增长的电力需求,同时减缓、停止并最终扭转其二氧化碳排放量的预计增长。但电力部门可以做的不仅仅是减少自身的排放。今年夏天,EPRI 发布了一份两卷报告,对插电式混合动力汽车对美国温室气体 (GHG) 排放和空气质量的影响进行了环境评估。该研究分析了九种情景,在这些情景中,插电式混合动力汽车在美国汽车市场中占有或多或少的份额,而电动汽车
插电式混合动力电动汽车(PHEV),其电池组适合驾驶用例,可以帮助减少运输部门的环境足迹。与常见的高压系统相比,基于低压水平的PHEVS显示出更高的燃料消耗,但作为回报,较低的零件成本受益,并允许使用较便宜的高能电池。在本文中,优化了48 V PHEV概念的电池大小,以最大程度地降低操作成本,同时考虑到电池降低,并确保终身强大的系统布局。为了研究高能电池的适用性,在日历和循环老化研究中对31个汽车级细胞进行了研究。结果表明,日历老化对整体容量损失的显着贡献为17.5%,应在电池设计过程中考虑。循环退化模型集成在具有各种实地驾驶速度和坡度轮廓的动态编程模拟环境中,这些速度和斜率轮廓是从测得的全年驾驶轮廓中提取的。模拟结果表明,考虑到能源管理策略中的退化会减少容量损失,但在整个车辆寿命中会导致更高的运营成本。将轻度混合动力汽车扩展到PHEV可以将运营成本降低18.5%。如果不收取车辆,则成本增加了6%,强调了对PHEV频繁充电的需求。
摘要:牵引力电池的生命周期策略,例如退休的汽车锂离子电池(LIBS)的再制造,再利用和回收利用,由于不久的将来会退休,并且对LIB的需求继续增长,因此人们越来越关注。同时,随着欧盟电池调节等因素提供更高的市场和产品透明度,电池系统在整个生命周期中的可持续性的相关性正在增加。因此,研究和行业需要预测,以评估未来的市场状况并做出充分的决策。因此,本文提供了从BEV和PHEV到2035的电池系统的返回量的预测。此外,自2013年以来,每年对PHEV和BEVS的代表性欧洲电池组进行评估,该电池基于每年至2021年市场份额最大的十辆车。此外,基于专家访谈,将电池返回流分为三种不同的3R策略,以评估即将到来的这些领域的工作量。“ 3R”一词是指围绕重用,再制造和回收的当前现有途径的总和。在2030年,大约38.8 GWH将每年返回并输入回收过程。为了重复使用电池,大约13 GWH将从2030年开始返回,准备用于固定存储进行能量过渡。与此相比,电池再制造预计每年将提供约11 gwh的体积。
电池是电池电动汽车(BEV)和插电式混合动力汽车(PHEV)中最重要的组件之一。通风阀绝对必要,以补偿密封电池外壳中的压力和温度波动,这可能会达到高水平。这些阀可确保对电池的稳定环境,并保护其免受外部影响。如果在一个电池单元中发生热事件,则阀门会迅速打开,并使空气从电池外壳中迅速逸出。
任何国家一直在采用越来越严格的CO 2排放法规,以支持车辆电气化。汽车制造商一直在加强其电气化策略,以达到坚固的标准。这些努力在公共和私营部门带来的协同效应一直在加速电动驱动车市场的增长,以期过渡到全电动车辆。在欧洲,插电式混合动力电动汽车(PHEVS)正在桥接向全电动车辆(EVS)的转变。中国新能源车市场(EV和PHEVS)预计将迅速扩展到2020年。即使在2020年取消补贴之后,市场也不太可能迅速缩小。在美国,特朗普政府的就职典礼可以加速电气化双极化。在日本,目前关注混合动力汽车(HEV)的市场结构可能会发生变化。考虑到每个地区的电气化方法和每个汽车制造商的电气化计划,作者估计了电动驱动车市场的大小(包括电动汽车,PHEV和HEVS)。一个乐观的估计表明,到2025年,该市场的规模将达到约1800万台(约占乘用车市场的17%)。电动驾驶汽车市场的快速扩张可能会导致锂离子电池(LIB)的供需紧密度。为了应对可能短缺的LIB,汽车制造商一直在审查其采购电池的策略,并试图与电池制造商建立牢固的合作伙伴关系。即使汽车行业一直向水平专业化转移,但已经看到了回到垂直整合的趋势。迅速上升的电动驱动车市场的影响将扩展到上游材料行业。为了进入全球市场,LIB材料行业将看到主要材料制造商和专业材料制造商之间的合作和合作伙伴关系。以这种方式,该行业可能会经历重组。车辆电气化对汽车零件行业的影响包括内燃机制造商遭受的商机的损失以及传统的传输到水平国际专业化的加速。在能源行业中,由于电气化在确保稳定的电源方面构成了机会和威胁,因此该行业必须制定适当的操作和解决方案以稳定电源。通信行业将通过将物联网应用于电动车辆的车身和电池充电器来看到新的商机的出现。
电气化是交通运输行业不断发展的范式转变,旨在实现更高效、性能更高、更安全、更智能和更可靠的车辆。事实上,从内燃机 (ICE) 转向更集成的电动动力系统的趋势很明显。非推进负载,如动力转向和空调系统,也正在电气化。电动汽车包括多电动汽车 (MEV)、混合动力电动汽车 (HEV)、插电式混合动力电动汽车 (PHEV)、增程式电动汽车 (REEV) 和全电动汽车 (EV),包括电池电动汽车 (BEV) 和燃料电池汽车 (FCV)。本书首先介绍汽车行业,并在第 1 章中解释电气化的必要性。并强调了与电信行业等其他行业的相似之处。第 1 章还解释了范式转变如何从 MEV 开始,由 HEV 确立,由 PHEV 和 REEV 获得动力,并将由 EV 完成。第 2 章和第 3 章分别介绍了传统汽车和 ICE 的基本原理。第 4 章至第 7 章重点介绍电动汽车的主要部件,包括电力电子转换器、电机、电动机控制器和储能系统。第 8 章介绍了混合电池 / 超级电容器储能系统及其在先进电驱动汽车中的应用。第 9 章介绍了应用于低压电气系统的非推进负载的电气化技术。第 10 章介绍了 48 V 电气化和皮带传动起动发电机系统,第 11 章和第 12 章分别介绍了混合动力传动系统和 HEV 的基本原理。第 13 章重点介绍插电式汽车所需的充电器。第 14 章研究了 PHEV。第 15 章介绍了 EV 和 REEV。此外,第 16 章介绍了车辆到电网 (V2G) 接口和电气基础设施问题。最后,第 17 章讨论了先进电力驱动汽车的能源管理和优化。本书旨在成为一本综合性的教科书,涵盖先进电力驱动汽车的主要方面,适用于工程专业的研究生或高年级本科生课程。每章都包括各种插图、实例和案例研究。对于对交通电气化感兴趣的工程师、管理人员、学生、研究人员和其他专业人士来说,本书也是一本关于电动汽车的易于理解的参考书。我要感谢 Taylor & Francis/CRC Press 员工的努力和帮助,特别是 Nora Konopka 女士、Jessica Vakili 女士和 Michele Smith 女士。我还要感谢蒋伟生先生为准备本书的许多插图所做的努力。