将曲面上扁平线束的最小浸入与临界特征值度量联系起来 Santiago Adams 导师:Antoine Song 在现有文献中,第一个特征值在曲面上临界的度量与该曲面在任意维球面中的最小浸入之间存在着密切的联系。我们知道,对于具有临界度量的曲面,存在一组拉普拉斯算子的特征函数,它们定义了进入球面的最小浸入。我们旨在使用局部参数将该理论扩展到扁平线束特征截面的情况。也就是说,给定一个第一个特征值在线束上临界的度量,我们旨在使用其特征截面的升力来定义其通用覆盖在球面中的最小浸入,并更好地理解是否存在原始曲面进入球面的最小浸入。伊辛铁磁体在经典和量子极限下的热力学性质 Sophia Adams 导师:Thomas Rosenbaum 和 Daniel Silevitch 该项目旨在探测模型伊辛铁磁体 LiHoF 4 在经典和量子相变中的热力学性质。经典跃迁发生在临界温度 1.53 K 和零磁场下,而量子跃迁发生在零温度极限下 50 kOe 量级的临界横向磁场下。我们将使用比热数据来比较两个跃迁的临界指数及其之间的交叉。 一种使用基于分类器的生成器生成和预筛选蛋白质以确定结合亲和力的新方法 Victoria Adams 导师:Matt Thomson 和 Alec Lourenco 由于当前方法筛选蛋白质结合功效的速度和规模,测试新的工程结合蛋白设计非常无效。定量而不是定性筛选新蛋白质将进一步提高效率。 Thomson 实验室开发了一种高通量筛选方法,用于收集有关结合蛋白的信息并实现蛋白质设计。在我的项目中,我致力于开发一种使用蛋白质语言模型预筛选生成蛋白质的新方法。应用现有的蛋白质大型语言模型 (pLLM),例如进化尺度模型 (ESM) 和 AlphaFold 2 & 3,我正在研究一种生成蛋白质然后预筛选其结合亲和力的方法。我还有机会学习如何使用实验室的高通量筛选分析来实验性地测试蛋白质设计。到目前为止,我还没有完全开发的方法/模型,但我有一个需要微调的基本分类器,并且需要一个仍需要指定最佳参数的生成器。我希望能够完成这些编程改进,并可能能够在夏季结束前通过应用高通量筛选来测试它们。来自路径积分的时间类纠缠 Zofia Adamska 导师:John Preskill 和 Alexey Milekhin 大多数量子力学形式主义都从不同的角度来看待空间和时间,这从相对论物理学的角度来看似乎是不自然的。为了解决这种不对称性,我们提出了一种时空密度矩阵的新定义,该定义源自路径积分方法,以更好地分析时空中的量子信息。我们的动机基于相对论量子场论中的观察,其中该密度矩阵的 Renyi 熵与通过从空间类分离到时间类分离的解析延续得出的结果完全一致。我们演示了如何使用这个密度矩阵来限制时空相关函数,并表明我们的界限比其他方法更紧并且遵循 Lieb-Robinson 界限。此外,我们在量子计算机上测试了这个时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了热化的新探针,并且可以为选择用于量子多体系统时间演化的有效张量网络假设提供启示。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使其成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞转录、翻译和复制系统 (PURE Rep)。此外,设计为在脂质体内由 PhiX174 基因触发时发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们目前的工作包括设计一种具有高效性的开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制我们在量子计算机上测试该时空密度矩阵对单量子比特系统的预测。使用我们的方法计算的时空纠缠构成了一种新的热化探测,可以为选择一种有效的张量网络假设来研究量子多体系统的时间演化。使用合成细胞建立病毒宿主相互作用的最小模型 Layla Adeli 导师:Richard Murray 和 Zach Martinez 利用最小模型研究合成细胞病毒感染的潜力使合成细胞成为研究尚未得到充分研究的病原体的首选。为了设计 PhiX174 噬菌体的合成宿主,我们尝试将 PhiX174 识别的脂多糖 (LPS) 整合到脂质体膜中,以潜在地封装无细胞的转录、翻译和复制系统 (PURE Rep)。此外,当脂质体中的 PhiX174 基因触发时,设计为发出荧光的立足点开关可以检测 PhiX174 基因组的 DNA 转录——我们的工作目前包括设计一种具有高效性的立足点开关。我们已经成功生产出脂质体,并正在努力整合检测机制
产品名称:MmeI 产品编号:R0637L 浓度:2,000 U/ml 单位定义:一个单位定义为在 37°C 下 1 小时内消化 rCutSmart 缓冲液中的 1 µg PhiX174 RF I DNA 所需的酶量,总反应体积为 50 µl。 包装批号:10263891 有效期:2026 年 11 月 储存温度:-20°C 储存条件:10 mM Tris-HCl、300 mM NaCl、1 mM DTT、0.1 mM EDTA、0.32 mM S-腺苷甲硫氨酸 (SAM)、50% 甘油、500 µg/ml rAlbumin(pH 7.4 @ 25°C) 规格版本:PS-R0637S/L/V v4.0
产品名称:MMEI目录编号:R0637L浓度:2,000 U/ml单位定义:一个单位定义为消化1 µg Phix174 rf I DNA所需的酶量,在RCUTSMART在Rcutsmart buffer中,在1小时内,在37°C的总反应量为50 µL。Packaging Lot Number: 10263891 Expiration Date: 11/2026 Storage Temperature: -20°C Storage Conditions: 10 mM Tris-HCl, 300 mM NaCl, 1 mM DTT, 0.1 mM EDTA, 0.32 mM S-adenosylmethionine (SAM), 50% Glycerol, 500 µg/ml rAlbumin (pH 7.4 @ 25°C) Specification版本:PS-R0637S/L/V V4.0
摘要 目的 微生物暴露对新生儿和婴儿的发育、生长和免疫至关重要。然而,胎儿出生前肠道中是否存在微生物组仍存在争议。本研究以足月无菌子宫切除术分娩的羔羊为动物模型,使用多组学方法研究产前肠道中微生物组的存在。设计 羔羊在无菌剖腹产后立即安乐死,并在无菌条件下获取其盲肠内容物和脐带血样本。使用宏基因组学和宏转录组测序评估盲肠内容物样本,以表征任何现有的微生物组。两种样本类型都使用代谢组学进行分析,以检测微生物代谢物。结果 我们在产前胎儿肠道中检测到了低多样性和低生物量的微生物组,主要由属于变形菌门、放线菌门和厚壁菌门的细菌组成。大肠杆菌是胎儿肠道中最丰富的菌种。我们还检测到多种微生物代谢物,包括短链脂肪酸、脱氧野尻霉素、丝裂霉素和妥布霉素,进一步表明存在代谢活跃的微生物群。此外,在胎儿肠道中检测到噬菌体 phiX174 和 Orf 病毒以及抗生素抗性基因,这表明携带抗生素抗性基因的噬菌体、病毒和细菌可以在妊娠期间从母亲传播给胎儿。结论这项研究提供了强有力的证据,表明胎儿肠道中存在微生物群,并且胎儿肠道的微生物定植始于子宫内。
本文档描述了使用Illumina技术请求库排序时要遵循的过程。本指南中提供了准备工作,图书馆提交,运输要求以及任何其他信息的详细说明。要避免请求处理的任何延迟,必须仔细遵循本指南中提供的说明。请注意,库的处理延迟将根据项目的大小而有所不同。建议与客户管理办公室联系以获取有关处理时间的信息。本指南中提到的要求还适用于图书馆质量控制项目。绘制流动池上群集边界并进行基本调用的Illumina软件取决于末端的序列复杂性,尤其是在插入的任一端,尤其是第一个十二左右的碱基对。因此,必须正确识别在这些区域中表现出足够序列复杂性的任何类型的库,否则测序数据将不足以最佳。这包括但不限于:•扩增子•BD狂想曲单细胞库•减少了基因组表示方法,例如限制性与位点相关的DNA(RAD)标记库•具有较低核苷酸复杂性(如双硫酸盐)的库中的库。为了通过低复杂性库克服此问题,可以在车道的10-50%处将控制库(例如,由Illumina提供的控制PHIX174库)升入,具体取决于初始库的复杂性。将PHIX添加到车道中将导致感兴趣的库的读数较低。上述相同的核苷酸复杂性问题适用于多路复用库时的索引序列。为了获得最佳结果,在多路复用库时,每条车道应至少使用3个索引。将按原样提供测序结果。CES对与库的设计,质量或序列复杂性有关的问题负责。
本文档描述了使用Illumina技术请求库排序时要遵循的过程。本指南中提供了准备工作,图书馆提交,运输要求以及任何其他信息的详细说明。要避免请求处理的任何延迟,必须仔细遵循本指南中提供的说明。请注意,库的处理延迟将根据项目的大小而有所不同。建议与客户管理办公室联系以获取有关处理时间的信息。本指南中提到的要求还适用于图书馆质量控制项目。绘制流动池上群集边界并进行基本调用的Illumina软件取决于末端的序列复杂性,尤其是在插入的任一端,尤其是第一个十二左右的碱基对。因此,必须正确识别在这些区域中表现出足够序列复杂性的任何类型的库,否则测序数据将不足以最佳。这包括但不限于:•扩增子•BD狂想曲单细胞库•减少了基因组表示方法,例如限制性与位点相关的DNA(RAD)标记库•具有较低核苷酸复杂性(如双硫酸盐)的库中的库。为了通过低复杂性库克服此问题,可以在车道的10-50%处将控制库(例如,由Illumina提供的控制PHIX174库)升入,具体取决于初始库的复杂性。将PHIX添加到车道中将导致感兴趣的库的读数较低。上述相同的核苷酸复杂性问题适用于多路复用库时的索引序列。为了获得最佳结果,在多路复用库时,每条车道应至少使用3个索引。将按原样提供测序结果。CES对与库的设计,质量或序列复杂性有关的问题负责。
微病毒科 (Microviridae) 的小型环状单链 DNA 病毒在所有生态系统中都很普遍且多样。它们的基因组通常介于 4.3 到 6.3 kb 之间,最近从海洋 Alphaproteobacteria 中分离出的一种微病毒是已知的最小 DNA 噬菌体基因组(4.248 kb)。有人提出用一个亚科——Amoyvirinae——来对这种病毒以及其他相关的感染 Alphaproteobacteria 的噬菌体进行分类。本文,我们报告了在来自各种水生生态系统的宏组学数据集中发现的 16 个完整的微病毒基因组,它们的基因组明显小于(2.991-3.692 kb)已知的基因组。系统发育分析表明,这 16 个基因组代表两组相关但又截然不同的新型微病毒群——amoyvirus 是它们已知的最亲近的亲属。我们认为这些小型微病毒是两个暂时命名为 Reekeekeevirinae 和 Roodoo- doovirinae 的亚科的成员。由于已知的微病毒基因组编码了许多重叠和重印基因,而这些基因无法被基因预测软件识别,因此我们开发了一种新方法,根据蛋白质保守性、氨基酸组成和选择压力估计来识别所有基因。令人惊讶的是,每个基因组只能识别出四到五个基因,重印基因的数量低于 phiX174 中的基因。因此,这些小基因组往往具有较少的基因数量和较短的每个基因长度,从而没有留下可以容纳重印基因的可变基因区域的空间。更令人惊讶的是,这两个 Microviridae 组具有特定且不同的基因内容,以及其保守的蛋白质序列的巨大差异,突出表明这两组相关的小基因组微病毒使用非常不同的策略来用如此少的基因完成其生命周期。这些基因组的发现以及对其基因组内容的详细预测和注释,扩展了我们对自然界中ssDNA噬菌体的理解,也进一步证明了这些病毒在漫长的进化过程中探索了广泛的可能性。
