摘要:由于活性氧(ROS)的过量产生,血管内皮内的氧化应激被认为是2型糖尿病的心脏血管并发症的起始和进展至关重要的。ROS一词包括多种化学物种,包括超氧化阴离子(O 2• - ),羟基自由基(OH - )和过氧化氢(H 2 O 2)。虽然低浓度ROS的本构生成对于正常的细胞功能是必不可少的,但过量的O 2• - 可能导致不可逆的组织损伤。过量的ROS产生由黄嘌呤氧化酶,未偶联的一氧化氮合酶,线粒体电子传输链和烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶催化。在O 2• - - NADPH氧化酶的NOX2同工型中被认为对2型糖尿病中发现的氧化应激至关重要。 相比之下,转录调控的NOX4同工型产生H 2 O 2,可以发挥保护作用,并有助于正常的葡萄糖稳态。 本综述描述了NOX2和NOX4的关键作用,以及NOX1和NOX5在葡萄糖稳态,内皮功能和氧化应激中的关键作用,其关键重点侧重于它们在健康中的调节,并且在2型糖尿病中的调节失调。被认为对2型糖尿病中发现的氧化应激至关重要。相比之下,转录调控的NOX4同工型产生H 2 O 2,可以发挥保护作用,并有助于正常的葡萄糖稳态。本综述描述了NOX2和NOX4的关键作用,以及NOX1和NOX5在葡萄糖稳态,内皮功能和氧化应激中的关键作用,其关键重点侧重于它们在健康中的调节,并且在2型糖尿病中的调节失调。
钛基磷酸钾(KTIOPO 4),通常称为KTP,以其在量子和光学技术中的应用而闻名。这项研究的重点是采用水热和共沉淀方法的KTP纳米晶体的合成,采用草酸作为封盖剂。X射线粉末衍射(XRD)分析证实了正骨KTP晶体的成功合成。傅立叶变换红外(FT-IR)光谱进一步验证了KTP内的键结构,其特征带对应于其在所有光谱中始终观察到的晶体结构。定量分析表明,水热方法产生的KTP纳米颗粒的平均晶粒大小约为35 nm,而共沉淀方法产生的较小的纳米颗粒,平均晶粒尺寸为22 nm。值得注意的是,在水热法中将草酸作为封盖剂的引入将晶粒尺寸降低15%至约30 nm,而在共沉淀法中,它意外地将晶粒尺寸增加了20%,导致纳米颗粒的平均晶粒尺寸为26 nm。此外,与通过热液方法合成的样品(约0.5%)相比,在共同沉淀的样品中发现晶格内的应变更高(约0.8%)。这些发现强调了合成方法和封盖剂对KTP纳米颗粒的大小,形态和结构完整性的重要影响。这种见解对于优化针对光学设备,光子学和量子技术的各种应用量身定制的KTP纳米颗粒的合成至关重要。水热方法显示出在产生较大纳米颗粒的功效,而草酸作为涂料剂的存在在控制晶粒尺寸和增强结构稳定性方面起着关键作用。
该研究根据所应用的存储技术和芬兰背景下的电气化程度研究了电动城市公交车的环境影响。磷酸锂(LFP)和电化学再生器(ECR)被选为储存技术。ECR可以是锂离子电池的替代品;但是,在应用于电气化城市公交车时,其环境表现知之甚少。这项研究的重点是柴油巴士,电池电动总线(BEB)和插电式混合动力总线。生命周期评估(LCA)用于评估存储技术与电力程度之间的潜在环境影响。来自该行业的主要数据用于评估制造ECR的影响。结果表明,生产ECR的KWH产生了178 kg CO 2 -EQ的全球变暖潜力(GWP),高于LFP。但是,其应用表明ECR的性能更好。在BEB中使用ECR和LFP的影响分别为385 g CO 2 -EQ/KM和441 G CO 2 -EQ/KM。混合系统分别为ECR和LFP生成652 g CO 2 -EQ/km和670 g CO 2 -EQ/km。这项研究还表明,电气化程度和环境益处之间没有一致的模式。方案分析表明,使用芬兰和挪威电力组合评估时,BEB提供了最佳的GWP,而在施加波兰电力时,混合系统表现最好。这项研究表明,存储技术,电气化程度,燃料固定和电源会影响环境性能。在决定使城市的运输系统电气化之前,需要仔细评估。
摘要:从阿尔及利亚健康鹰嘴豆的根际分离出的两种甲状腺素菌菌株和三个芽孢杆菌菌株的体外磷酸盐溶解能力以及对池塘实验中鹰嘴豆幼虫的生长影响进行了评估。所测试的微生物具有较高的磷酸盐溶解活性,溶解度指数范围为2.41至7.40。溶解化磷酸盐的浓度从30.17到157.44μg/ml不等。在龙舌兰杆菌BT1(157.44μg/ml)和Trichoderma Orientale T1(143.33μg/ml)的两种培养滤液中观察到了最大磷酸盐 - 溶解活性,并伴随着4.51至5.75的pH降低。分别使用菌株(B.龙舌兰B. tequilensis bt1和T. t. t.),结合使用,通过促进种子的发展并有效增强植物生长,对发芽产生有益的作用。鹰嘴豆幼苗与单独的治疗相比,用B.龙舌兰芽孢杆菌BT1和T. Orientale T1的混合物一起处理,表现出更好的营养生长。据我们所知,这是组合微型iSms b的磷酸盐溶解潜力的第一份报告。Tequilensis和T. Orientale及其促进鹰嘴豆植物生长的能力。
键由玻璃的磷酸盐成分贡献。结果,Inaba等人对Young的模量的预测。[3]比依赖MM模型中使用的氧化物解离能的值更接近测量值,特别是对于磷酸盐玻璃。在最近对Okamoto等人的Zn-SN-磷酸玻璃机械性能的研究中。[4],通过使用金属氧键距离和金属离子配位数(由X射线和中子衍射研究确定[5-7])来修改Inaba模型[5-7],以钙化离子堆积分数(V P)。此外,Okamoto等。修改了Inaba等人使用的解离能。与四面体相比,与邻近的p -tetrahedra相比,通过一个(q 1)或两个(q 2)布里牛根键相比,要考虑不同的协调环境,特别是对于SN 2 + -Polyhedra,并说明了孤立的PO 4 3-(Q 0)四面体的更大刚度。Okamoto的单个氧化物解离能和体积的新值改善了对弹性模量和维克斯硬度的预测,这些弹性模量和维克硬度的硬度是几个系列X Zno-(67 -x)Sno -33p 2 O 5玻璃,具有有用的光子末端特性的组合物[4]。最近,Shi等人。[8]通过指出构成氧化物玻璃结构的金属多层的有效体积并不是构成多面体的离子半径的总和,但还必须在该多面体中包括无知的空间。通过更换
在较高的真核生物中,线粒体在能量生产,信号传导和生物合成中起多种作用。线粒体具有多个线粒体DNA(mtDNA)的副本,该线粒体DNA(mtDNA)编码了37个对于线粒体和细胞功能必不可少的基因。当mtDNA受到内在和外源性因素和外源性因素的挑战时,MTDNA经历修复,降解和补偿性合成。mtDNA降解是mtDNA损伤响应和维持中的新兴途径。涉及的关键因素是人线性基因组维持外切酶1(MGME1)。尽管以前的生化和功能研究,但关于MGME1介导的DNA裂解的极性存在争议。此外,DNA序列如何影响MGME1的活性仍然难以捉摸。这种信息不仅是对MGME1的理解的基础,而且对于决定mtDNA降解机制至关重要。在此,我们使用定量测定来检查底物结构和序列对MGME1的DNA结合和酶促活性的影响。我们证明了MGME1与单链DNA底物的5 0端结合并切割,尤其是在5 0-磷酸盐存在下,在DNA结合和MGME1的最佳裂解中起重要作用。此外,MGME1在末端耐受某些修饰,例如在基础切除修复中形成的5 0-脱氧核糖磷酸磷酸盐中间体。我们表明,MGME1通过不同的效率处理不同的序列,而DT和DC序列分别是最多,有效地消化的序列。我们的结果提供了对MGME1的酶促特性的见解,以及MGME1与MTDNA降解中DNA聚合酶γ的3 0 - 5 0外核酸酶活性的配位基本原理。
摘要:采矿和加工磷酸盐是包括阿尔及利亚在内的一些发展中国家的经济基本分支之一。常规的矿石益处方法可能会通过消耗大量的水资源(洗涤和流量),潜在的危险化学物质和热能来损害环境。矿水中含有有毒金属,释放后会干扰环境功能。因此,根据环境需求,应逐渐用安全的生物技术过程逐渐取代常规方法。这项研究旨在研究从Djebel Onk Ore(Algeria)中分离出的天然微生物的生物吸附和粘附能力。所检查的细菌菌株的金属积累效率有所不同。磷酸盐与天然菌株HK4的孵育显着增加了Mg和Cd的恢复(分别为pH 7、8147.00和100.89 µg/g/g -1)。HK4菌株还显示出比枯草芽孢杆菌的参考菌株对矿石颗粒的粘附更好。因此,使用天然HK4菌株时,生物吸附可以更有效,该菌株可以在pH 4-10范围内去除CD和/或MG。此外,关于HK4独特的粘附能力,可以在生物流动方法的设计中考虑菌株,以及开发一种环保的矿石和流动性废物造成的方法。
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P