英国(由民航局制定)和美国(由联邦航空管理局制定)均有关于太阳能开发和航空活动的指南。英国民航局的指南相对较高,并未规定正式的方法。Pager Power 在定义自己的闪烁和眩光评估指导文件和方法 1 的过程中审查了现有指南和可用研究。该方法定义了一个全面的流程,用于确定对地面受体(包括住宅、道路和铁路)和航空活动的影响。这是在文献综述、利益相关者咨询和与太阳能开发商的接触后发布的。从广义上讲,该过程是进行几何反射计算,如果预测会发生太阳反射,则考虑受体和反射太阳能电池板之间的屏蔽(现有和/或拟议)。然后是所有受体都可能发生太阳反射的情景
对政府设施和实验室的需求•持续支持Admatel和AMCEN•建立米沙ya和棉兰老岛的辐射设施,以满足该地区的行业领域的需求,需要人力资源的行业•对STEM课程,行业和消费者的启动方案的启动和培训•提高对全球范围的研究人员的跨越范围,以提高对STEM课程的启用和培训的范围•在国外培训范围的范围•需要和开放渠道的协作渠道(例如实习,沉浸式)•介绍针对光学和光子学的有针对性的培训选修选修课,以促进某些行业应用的毕业生的就业准备•BALIK Scientist计划巩固资源,领导R&D领域的领域和协作工作•改善劳动力的劳动力准备工作,以与跨性伙伴的开发和伙伴的构建和伙伴的能力•技术及以上的伙伴•技术研究•技术研究•技术研究•技术研究•技术研究,•研发应用和基础设施共同开发实体•路径中心研发项目:THZ测量半导体和航空航天设备的质量保证(2022-2024)S&T政策计划•确保对政府政策奖励和利益的交流,以使利益方面的利益和利益与利益相关者实习,沉浸式)•介绍针对光学和光子学的有针对性的培训选修选修课,以促进某些行业应用的毕业生的就业准备•BALIK Scientist计划巩固资源,领导R&D领域的领域和协作工作•改善劳动力的劳动力准备工作,以与跨性伙伴的开发和伙伴的构建和伙伴的能力•技术及以上的伙伴•技术研究•技术研究•技术研究•技术研究•技术研究,•研发应用和基础设施共同开发实体•路径中心研发项目:THZ测量半导体和航空航天设备的质量保证(2022-2024)S&T政策计划•确保对政府政策奖励和利益的交流,以使利益方面的利益和利益与利益相关者
组织和技术课程委员会计划举行的活动(技术会议)和共享(全体会议和社交活动)议程。2024 SBFOTON IOPC将遵循IEEE会议的典型格式,包括与同行评审的论文,全体会议和邀请的演讲一起演示的技术会议。提交必须使用IEEE A4-PAPE模板进行会议(https://www.ieee.org/conferences/publishences/publishing/templates.html)和3页限制。2024 SBFOTON IOPC网站将很快启动,并且使用EDAS平台的论文注册和上传的截止日期为2024年8月19日。接受将在9月30日进行传达,最终版本可能会上传到2024年10月21日。公认的论文将在IEEE Xplore上发表在会议上。
2D金属卤化物钙钛矿是一类新兴的可溶液加工半导体,由于其依赖于厚度和成分的电子可调性、简便的合成和高缺陷容忍度而引起了人们的浓厚兴趣,这使得它们在各种光电应用中具有吸引力。 [1] 这些2D变体是通过有机铵阳离子和金属卤化物八面体自组装成量子阱结构而形成的。 与相关的3D组合物相比,这种维度赋予了电荷载流子的量子限制,并且由于介电屏蔽减少而增加了激子结合能。 [2] 3D组合物中低频声子的数量和室温下的动态无序影响电子-空穴对的介电环境,从而导致电子-声子相互作用,例如电荷载流子屏蔽
实现材料电磁特性(EM)特性的强和快速调节的能力具有重要意义。大小和EM响应的超快速变化即使以单步的方式也会导致深远的影响[1-3],包括时间差额和时间反射。这些过程似乎类似于从空间中的界面中的折射和反射,但实际上,它们与空间对应物的根本不同。在两个介电介质之间的空间界面上,能量(频率)是保守的;而同质材料的折射率的突然变化导致频率(能量)变化,而动量(波形k)是保守的。具体而言,如果折射率从n 1变为n 2,则折射和反射波的新频率由ω2=ω1n 1 n 2给出,其中ω1是原始波的频率。此外,因果关系意味着时间的反射不能及时回到时代(不幸的是;人们尝试的 - 到目前为止的静脉),但相反,它们的阶段被反向反射(如水波[4],在RF [5]中证明,在RF [5]和Microwaves [6,7]和Ultracold Atoms [8]和超级空间[8]和Space [8]以及9.9]中[9]。时间反射的波和时间反射波的波数与原始波具有相同的波数。因此,这两种现象都会导致光谱翻译:观察到红移以增加折射率,而蓝换灯是为了减少折射率(图1)。2)。这显着影响所涉及的物理。在时间变化的材料中,定期定位会导致形成所谓的光子时间晶体(PTC),如彼得·哈雷维(Peter Halevi)在2009年提出的,[3]。为了在光频率下实现PTC,材料(t)的介电介电常数必须在光学波周期的时间尺度上进行周期性变化。折射率的强,周期性调制引起多种时间反射和时间折射,这会干扰并导致在动量(k)中的带隙分隔的频段中组织的分散关系(图在PTC中,能量不能保守(随着时间翻译的对称性被调制打破),并且驻留在动量间隙中的状态表现出指数呈指数增加或衰减的振幅。例如,当一波入射在(空间)光子晶体上时,其频率位于光子带隙内 - 波动充分反射,但是当脉冲在PTC介质内传播具有PTC带动量的动量时,与PTC带的动量相关 - 其组速度将脉搏停止,脉搏停止并效果效果,绘制了效果的效果,绘制了该模块的绘制,从而绘制了绘制的能量。多年来已经研究了随着时变介质的波动传播的各个方面[1,10 - 23],但光学范围内的实验观察结果仍然具有挑战性。重要的是,光子时间晶体的实现依赖于具有相当大的时间反射和时间反射。通常,即使在变化
自然光未校准光度立体 (NaUPS) 减轻了传统未校准光度立体 (UPS) 方法中严格的环境和光线假设。然而,由于内在的不适定性和高维模糊性,解决 NaUPS 仍然是一个悬而未决的问题。现有工作对环境光和物体材质施加了强有力的假设,限制了更一般场景中的有效性。或者,一些方法利用复杂模型的监督学习,但缺乏可解释性,导致估计有偏差。在这项工作中,我们提出了自旋光未校准光度立体 (Spin-UP),这是一种无监督方法,用于解决各种环境光和物体中的 NaUPS。所提出的方法使用一种新颖的设置,在可旋转的平台上捕获物体的图像,通过减少未知数来减轻 NaUPS 的不适定性,并提供可靠的先验来缓解 NaUPS 的模糊性。利用神经逆向渲染和所提出的训练策略,Spin-UP 可以以较低的计算成本恢复复杂自然光下的表面法线、环境光和各向同性反射率。实验表明,Spin-UP 优于其他监督/无监督 NaUPS 方法,并在合成和真实世界数据集上实现了最先进的性能。代码和数据可在 https://github.com/LMozart/CVPR2024-SpinUP 获得。
这项迷你审查将重点放在过去3年中乙烯基聚合物的光催化升级和解聚的发展。首先简要讨论聚苯乙烯的升级,以及有关其他不可生物降解聚合物的升级的最新报道。有关聚苯乙烯升级的全面摘要,鼓励读者参考最近的出色评论。[6,7b,c,8]相反,这项迷你综述旨在对乙烯基聚合物的光催化降解进行严格讨论,包括聚甲基丙烯酸酯,聚丙烯酸酯,聚丙烯酸酯和其他材料,例如聚乙烯基醚。尽管当前的聚合物晶体降解策略不会像聚苯乙烯那样产生高增值的小分子,但它们可以通过高效的光催化过程将其完全解散回成单体。最后但并非最不重要的一点是,在讨论我们对令人兴奋的新方向的愿景中提供了关键的未来前景。
单光子光检测和范围(LIDAR)系统通常配备一系列检测器,以提高空间分辨率和传感速度。但是,考虑到激光跨场横跨场景产生的固定量磁通量,当更多像素在单位空间中堆积时,每像素信号到噪声(SNR)将减小。这在传感器阵列的空间分辨率与每个像素的SNR之间的空间分辨率之间提出了基本的权衡。探索了这种基本限制的理论表征。通过得出光子竞争统计量并引入一系列新的近似技术,得出了时间延迟的最大样品估计器的平均平方误差(MSE)。理论预测与模拟和实际数据良好。
摘要 在当今的数字时代,大众媒体在协助政府战胜 COVID-19 大流行方面发挥着至关重要的作用。该职位的职责包括传播有关 COVID-19 大流行的政府政策的呼吁、建议、新闻和社会化工作的信息。本研究的目的是通过在印度尼西亚北苏门答腊省的报纸 Harian Waspada 上传播大规模疫苗照片新闻来研究 COVID-19 缓解工作的优化。采用符号学方法对描绘大规模疫苗接种的照片进行分析,以检查图像中嵌入的外延、内涵和神话含义。采用访谈法收集与 Harian Waspada 有关的摄影师和编辑的见解,他们积极参与大规模疫苗相关新闻的报道。本研究的结果表明,Harian Waspada 除了致力于通过照片新闻向更广泛的社区传播知识外,在新闻文章中加入大规模免疫照片也是吸引读者的元素。 《Harian Waspada》中加入了人文照片,描绘了大规模疫苗接种工作,旨在唤起人们的惊奇、怜悯、喜悦或绝望等情感。关键词:COVID-19;《Harian Waspada》;新闻报道;图片新闻;符号学分析