摘要 本研究使用具有平面扫描功能的电光 (EO) 传感器演示了基于光子学的 300 GHz 频段近场测量和远场特性分析。待测场在 EO 传感器处上变频至光域 (1550 nm),并通过光纤传送至测量系统。在 13 s 的一维测量时间内,系统的典型相位漂移为 0.46 ◦,小于该时间尺度下相位测量的标准偏差 1.2 ◦。将从测得的近场分布计算出的喇叭天线远场方向图与使用矢量网络分析仪通过直接远场测量系统测得的远场方向图进行了比较。对于与角度相关的参数,我们通过近场测量获得的结果的精度与通过直接远场测量获得的结果相当。我们的近场测量结果与直接远场测量结果之间的旁瓣电平差异(约 1 dB)归因于探针校正数据的过量噪声。我们相信,基于光子学的球形 EO 探针扫描近场测量将为 300 GHz 频段高增益天线的表征铺平道路。
纳米晶体 (NC) 现已成为光子应用的既定基石。然而,它们在光电子学中的集成尚未达到同样的成熟度,部分原因是人们认为瓶颈在于跳跃传导导致的固有有限迁移率。人们做出了巨大努力来提高这种迁移率,特别是通过调整粒子表面化学以实现更大的粒子间电子耦合,并且已经实现了 ≈ 10 cm 2 V − 1 s − 1 的迁移率值。人们承认,这个值仍然明显低于 2D 电子气体中获得的值,但与具有类似约束能的外延生长异质结构中垂直传输的迁移率相当。由于进一步提高迁移率值的前景似乎有限,因此建议应将精力集中在探索跳跃传导带来的潜在好处上。这些优势之一是扩散长度对偏置的依赖性,这在设计基于 NC 的设备的偏置可重构光学响应方面起着关键作用。本文将回顾构建偏置激活设备的一些最新成果,并讨论设计未来结构的基本标准。最终,跳跃传导是产生低无序材料无法提供的新功能的机会。
论文还展示了近期的突破性成果,展示了窄带高功率 DFB 源,以及半导体光放大器 (SOA) 增益芯片的初步结果。此外,论文还强调,BluGlass 已成功展示了集成 GaN 主振荡器功率放大器 (MOPA),该放大器在单一空间模式下实现了 750 mW 的功率。集成设备用与半导体光放大器对齐的快轴和慢轴透镜取代单模激光器,在减小尺寸和复杂性的同时提高了功率。BluGlass 首席执行官 Jim Haden 表示:“我们在可见光 GaN 激光器、单模、近单频、MOPA 和光子集成解决方案方面的领先进展是革命性行业的关键第一步,包括航空航天、国防、量子计算和生物医学应用。” BluGlass 正在扩展可见激光能力的范围,从紫色到蓝绿色的 DFB 波长的增加、世界一流的噪声抑制以及单模激光器与功率放大器的集成,在单一空间模式下可实现 750 mW 的蓝光,这些都证明了我们世界领先的团队所开创的惊人创新。“我们不断增长的战略能力使 BluGlass 能够利用量子传感、通信和计算等令人兴奋的增长市场。这些进步将使我们的客户能够通过创建局部量子解决方案来解决复杂问题,例如大气激光雷达检测晴空湍流、水下通信和激光雷达以及 GPS 欺骗和干扰。
•具有Excelitas的X-Cite Xylis™II宽光谱LED照明系统的显微镜演示,用于常规和高级荧光成像应用的ARC灯更换,以及带有反向添加图像传感器的PCO.Edge 10 Bi Clhs摄像头,可提供多达85%的量子效率,可提供高达85%的宽度光谱。•多光谱技术,包括PCO.pixelfly™1.3 SWIR高性能机器摄像机,带有Ingaas图像传感器,在短波红外(SWIR)中敏感,近红外且可见的电磁谱系范围;除了具有模块化设计和无限校正光学的Optem®融合微成像系统,可在机器视觉,自动化光学检查和非接触式计量方面的最大多功能性。•光学相干断层扫描(OCT)演示展示了Excelitas的Axsun高速SS-OCT可调激光发动机的调音带宽,输出功率,扫描速度和连贯性长度,从而在下一代OCT系统中削减性能。Excelitas Photonics West Booth的其他演示将包括:•使用Excelitas'PCO.Edge®26CLHS SCMOS摄像机和NewLinos®Inspec.xInspec.x 5.6/105 Vis-nir镜头进行自动排序。此演示提供了由基于AI的图像处理驱动的快速响应分类,使用NVIDIA JETSON板,在图像数据流中•使用Excelitas的新PCO.DIMAX 3.6 ST高速相机和Linos D.Fine HR-M系列镜头在高速分析,分析和检查应用程序中使用高速对象识别。•固态激光雷达演示展示了带有单片4通道芯片的自定义16通道脉冲激光模块。低功率digipyro家族可以是ASIC集成驱动程序的芯片具有Excelitas高功率激光器(50 a的150 W /通道)的功能,以及CMOS SPAD(单个Photon Avalanche二极管)阵列,用于LIDAR系统应用。•具有Excelitas低功率Digipyro PYD 1598的实时运动检测演示,以1.8V供应电压为新的行业领先标准,供应电流大大降低。
随着集成光子系统的规模和复杂性的增长,光子设计自动化(PDA)工具和过程设计套件(PDK)对布局和仿真变得越来越重要。但是,固定的PDK通常无法满足自定义的不断增长的需求,迫使设计师使用FDTD,EME和BPM模拟来花费大量时间来进行几何学优化。为了应对这一挑战,我们提出了基于光学波导的单一演变以及来自固有波导的汉密尔顿人的紧凑模型,提出了一个数据驱动的本本元传播方法(DEPM)。相关参数是通过复杂的耦合模式理论提取的。一旦构造,紧凑型模型就可以在模型的有效范围内实现毫秒尺度的模拟,以与3D-FDTD达到准确性。此外,该方法可以迅速评估制造对设备和系统性能的影响,包括随机相误差和对极化敏感的组件。数据驱动的EPM因此为未来的光子设计自动化提供了有效和功能的溶液,并有望在集成光子技术方面进一步进步。
本卷中的论文是封面和标题页上引用的技术会议的一部分。已选择论文并由编辑和会议计划委员会进行审查。一些会议演讲可能无法发表。其他论文和演示录音可以在SPIE数字图书馆在Spiedigitallibrary.org上在线获得。论文反映了作者的工作和思想,并按照提交的本文发表。发布者对信息的有效性或依赖依据所产生的任何结果概不负责。请使用以下格式从这些程序中引用材料:作者,“纸的标题”,在AOPC 2024:AI in Optics and Photonics中,由Hongwei Chen,Xingjun Wang,Proc。编辑。SPIE 13502,七位数的文章CID编号(DD/mm/yyyy); (doi url)。ISSN:0277-786X ISSN:1996-756X(电子)ISBN:9781510687936 ISBN:9781510687943(电子)由Spie P.O.出版。 框10,贝灵汉,华盛顿98227-0010美国电话+1 360 676 3290(太平洋时间)Spie.org版权所有©2024光学仪器工程师协会(SPIE)。 在本书中复制材料,以供内部或个人使用,或者用于内部或个人使用特定客户,超出了美国授予的合理使用规定 版权法由SPIE授权支付费用。 要获得本卷中使用和共享文章的许可,请访问popyright.com的版权清除中心。 由Curran Associates,Inc。在美国印刷的SPIE许可。ISSN:0277-786X ISSN:1996-756X(电子)ISBN:9781510687936 ISBN:9781510687943(电子)由Spie P.O.出版。框10,贝灵汉,华盛顿98227-0010美国电话+1 360 676 3290(太平洋时间)Spie.org版权所有©2024光学仪器工程师协会(SPIE)。 在本书中复制材料,以供内部或个人使用,或者用于内部或个人使用特定客户,超出了美国授予的合理使用规定 版权法由SPIE授权支付费用。 要获得本卷中使用和共享文章的许可,请访问popyright.com的版权清除中心。 由Curran Associates,Inc。在美国印刷的SPIE许可。框10,贝灵汉,华盛顿98227-0010美国电话+1 360 676 3290(太平洋时间)Spie.org版权所有©2024光学仪器工程师协会(SPIE)。在本书中复制材料,以供内部或个人使用,或者用于内部或个人使用特定客户,超出了美国授予的合理使用规定版权法由SPIE授权支付费用。要获得本卷中使用和共享文章的许可,请访问popyright.com的版权清除中心。由Curran Associates,Inc。在美国印刷的SPIE许可。除非出版商的书面许可,否则禁止重新出版,转售,广告或促销或任何形式的系统或多重复制本书中的任何材料。
2000 年至 2019 年间,全球研发支出从 7250 亿美元增至 2.419 万亿美元(以美元购买力平价计算),全球年增长率为 6.4%,而全球 GNP 增长率为 3.5%。全球研发支出的分布发生了根本性变化(见图 1)。与欧洲一样,北美(主要由美国主导)在 2000-2010 年期间的头十年全球竞争中的市场份额下降,从 2000 年的 40% 下降到 2010 年的 31%。然而,在过去十年中,欧洲和美国均未能重新获得任何“市场份额”,研发支出的年增长率都接近。它们对全球研发支出的贡献保持稳定,从全球支出的 23% 降至 22%(欧洲),从 31% 降至 29%(美国+加拿大)。同期,中国对全球研发支出的贡献从 2000 年的 329 亿美元(占全球研发支出的 4.5%)增加到 2019 年的 5257 亿美元(占支出的 21.7%)。这意味着过去二十年,中国研发支出每年增长 15.7%。然而,增长正在放缓(2000 年至 2010 年间增长超过 20%,第二个十年增长约 10%)(见表 1)。1
从量子 2.0 所包含的原则发展而来的技术解决方案有望在医疗保健、通信、能源和安全等众多应用领域提供增强的差异化功能。光子学在许多这些解决方案中发挥着推动作用,既是主要技术,也是支持技术,有助于实现稳定、稳健的解决方案。本次会议重点关注光子学作为量子科学和工程领域的推动者的作用。主题包括光子学在计算和模拟、网络和通信、精确计时以及传感和成像等领域的作用。还包括在这些应用中利用光子学的量子材料、组件和设备的研究、开发和使用。本次会议旨在汇集学术界、政府和工业界的国际专家,传播和讨论光子学作为量子技术领域推动者的最新成果。本次活动高度重视与会者有充足的时间进行讨论和交流,以增强会议体验。欢迎提交关于光子学作为量子科学和技术的推动能力的各个方面的原创成果,特别关注以下领域:
德国光子学的历史历史可追溯到19世纪初期,当时物理学家约瑟夫·冯·弗劳恩霍夫(Joseph von Fraunhofer)(物理学家和眼镜师)奠定了现代光学技术的基础。fraunhofer在光谱和精度光学方面的进步,包括衍射式的发明,以光学研究的领导者为领导者。在19世纪末和20世纪初,Carl Zeiss等德国公司成立于1846年,彻底改变了光学仪器,部分地用于科学和医疗应用。蔡司与恩斯特·阿贝(Ernst Abbe)和奥托·肖特(Otto Schott)的合作,在镜头设计和玻璃生产方面开创了突破性的创新。第二次世界大战后,德国的光学和光子部门经历了快速增长,这是在工业申请和科学研究中的进步所带来的。像Max Planck Institutes和Fraunhofer Society这样的研究机构成为世界领导人,促进了Acade-MIC研究与工业发展之间的强大合作。重点是激光技术,它成为该国的工业和科学进步不可或缺的一部分。德国公司,例如Atlas Laser,Lambda Physics,Tui Laser,Rofin-Sinar-这些以及Cooherent收购的其他公司以及家族拥有的机器制造商Trumpf成为激光技术的先驱,开发了用于精确的制造,医疗设备和科学仪器的最先进的解决方案。特朗普(Trumpf)的高性能工业激光器占据了革命性的制造工艺的高性能工业激光器。激光创新的这种兴趣将德国推向了全球光子学业的最前沿。
截至2024年9月30日(日本GAAP)的财政年度的合并财务业绩(日本GAAP)2024年11月8日公司名称:Hamamatsu Photonics K.K.股票上市:东京证券交易所股票代码:6965 URL:https://www.hamamatsu.com/jp/en代表:Tadashi Maruno:Tadashi Maruno,代表兼总裁,首席执行官,联系人联系:Kazuhiko Mori:Kazuhiko Mori,Kazuhiko Mori,kazuhiko Mori,董事,财务和会议局高级兼总部总部( +81-53-53-53-53-53-53-53-53-53-53-53-53-2-53-52-2-52-53-52)股东:2024年12月20日预定的文件证券报告日期:2024年12月20日,预定的日期开始股息付款:2024年12月23日,已准备好财务报表的补充材料:是的:是的,将举行介绍以解释财务报表:是的:是的:是的(分析师和机构投资者,请注意:所有数量)截至2024年9月30日(2023年10月1日至2024年9月30日)的财政年度的合并财务结果(1)(1)合并运营结果注意:百分比数字表示与上一年同期的变化。