在植物适应区域中,复合叶子证明了自然的创造力。与简单的叶子不同,该叶子由单个未分离的叶片组成,复合叶子分为一个连接到公共rachis上的多个传单。这种独特的结构提供了一系列的生理和生态优势,提高了光合作用的效率并确保在各种环境中生存。在植物生物化学和生理学杂志的范围内,复合叶体现了一种精致的进化解决方案,用于优化光合作用和植物强度。
13. 为什么化学合成对深海中的自养生物和异养生物都很重要?答案各不相同。这是自养生物在被认为不存在生命的地方产生自身能量的机制。这些过程对异养生物很重要,因为异养生物依靠自养生物获取能量;反过来,自养生物又为丰富多样的群落的发展提供所需的食物。此外,海洋中任何导致所用化合物可用性发生变化的变化都可能对深海生物产生不利影响。深海中的许多生态系统都依赖于从海面落下的食物,这些食物是死物和被称为“海洋雪”的废物——但在存在化学喷口和渗漏的地区,从岩石和沉积物中升起的化学物质可提供能量。
太阳陈1,2,3,玛塔·霍卡4,菲利普·戴维5,Yaqi Sun 2,Fei Zhou 3,Tracy Lawson 5,Peter J. Nixon 4,Yongjun Lin 3,lu-niw Liu 2,6 * 1 Guangdong guangdong guangdong guangdong省级利用和药物保存和北部北部的省级北部。 512000,中国2分子与综合生物学研究所,利物浦大学,利物浦大学,利物浦L69 7ZB,英国3号国家遗传改善的国家主要实验室和国家植物基因研究中心,瓦兹胡农农业大学,武汉,瓦汉430070,430070,430070 2AZ,英国5日生命科学学院,埃塞克斯大学,科尔切斯特CO4 4SQ,英国6海洋生命科学学院和中国海洋深海洋多球和地球系统的边境科学中心,中国海洋大学266003,中国 *通讯 *通信:luning.luning.luiu@luning@liverpool.ac.ac.ac.uk(l.-n.-n.l.-n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l>摘要尽管Rubisco是全球最丰富的酶,但由于其营业率低和区分CO 2和O 2的能力有限,碳固定效率低下,尤其是在高O 2条件下。为了解决这些局限性,包括蓝细菌和藻类在内的浮游植物已经进化了CO 2浓缩机制(CCM),这些机制涉及在特定结构内将Rubisco划分的rubisco,例如在藻类或藻类中的cyanobacteria或Pyrenacoids中的羧基助理。工程植物的叶绿体建立了类似的结构来分隔Rubisco,这引起了人们对改善作物植物中光合作用和碳同化的兴趣。在这里,我们提出了一种方法,可以通过遗传融合的超纤维纤维构成超级纤维绿色荧光蛋白(SFGFP)在烟草中有效地诱导内源性rubisco的凝结(Nicotiana tabacum)叶绿体。通过利用SFGFP的固有寡聚特征,我们成功地创建了类似pyrenoid的Rubisco冷凝物,这些冷凝物在叶绿体中显示动态的,类似液体的特性,而不会影响Rubisco组装和催化功能。转基因烟草植物与野生型植物相比表现出可比的自养生长速率和环境空气中的完整生命周期。我们的研究提供了一种有希望的策略,可以通过相分离调节植物叶绿体中的内源性Rubisco组装和空间组织,这为生成合成细胞器样结构的基础为碳固定的碳固定结构(例如羧化合物和吡啶样),以优化光合效率。关键字:Rubisco;碳固定;光合作用;叶绿体工程;相位分离;蛋白质冷凝;植物生物技术
光合作用是一种基本的生物学过程,是地球生命的基石,维持地球的生态系统并在全球碳循环中起关键作用。这种复杂的过程主要发生在植物,藻类和某些细菌中,将阳光转化为化学能,从二氧化碳和水中产生氧气和有机化合物。由浮游植物驱动的生物碳泵将碳从海面传输到更深的水域。当浮游植物死亡时,它们的有机物会沉入海底,有效地隔离了碳。这种自然机制强调了保护海洋生态系统并解决海洋酸化的重要性,这威胁了浮游植物种群。光合作用与全球碳循环之间的关系不仅对维持生命的维持至关重要,而且对于调节地球的气候和大气组成也至关重要(Alonso-Blanco等,2000)。
建议引用推荐引用XU,xiaohui;杜塔(Aveek); Khurgin,雅各布;魏,亚历山大; Shalaev,Vladimir M。;和Boltasseva,Alexandra,“ TIN @ Tio2 Core-Shell纳米颗粒作为等离子体增强的光敏剂:热电子注入的作用”(2020年)。化学系出版社。论文23。https://docs.lib.purdue.edu/chempubs/23
海洋光合作用有助于通过允许海洋植物和藻类从大气中吸收二氧化碳(CO 2)来减轻全球变暖。这些生物使用光合作用将阳光,水和Co 2转化为有机分子,从而释放氧作为副产品。这种机制隔离了大量的碳,将其存储在生物质和沉积物中,尤其是在红树林,海草和盐沼等“蓝色碳”栖息地中。此外,微观浮游植物在海洋表面层中进行大规模光合作用,从而显着助长了这一努力。保护和恢复海洋栖息地对于改善碳封存和防止气候变化至关重要。
碳捕获和生化存储是光合产量和生产力的主要驱动因素。为了阐明控制碳分配的机制,我们使用微藻作为简化的植物模型设计了一种光合光响应测试系统,用于遗传和代谢碳同化跟踪。在相同的picochlorum celeri物种的两个变体中,TG1和TG2阐明了代谢瓶颈部的两个变体之间的高光响应性光生理学和碳利用动力学的系统生物学映射,并使用机构13 C-Elfooxomics进行了中间体的传输速率。同时全局基因表达动力学显示,有73%的注释基因在一小时内响应,阐明了与植物中CCA1/LHY时钟基因密切相关的单数,二元响应的转录因子,TG2中表达有显着变化。表达TG2 CCA1/LHY基因的转基因P. celeri TG1细胞显示出15%的生长速率和25%的储存碳水化合物含量增加,从而支持单个转录因子的协调调节功能。
to:file From:Paul D. Pottle,项目总监日期:2024年6月3日主题:MV Battery Steele的建筑进度 - 塞内斯科 - #8此报告涵盖了2024年4月和2024年5月的塞内斯科造船厂的建设。造船厂继续取得稳定的进步,但某些工作项目尚未按预期进行。大多数上部结构都在适当的位置,还有一些较小的焊接要做。在此期间,将最后一个模块(#12,飞行员房屋结构)制造并安装在船舶结构上。在整个船只上制造和安装各种管道部分和系统以及制造和安装设备基础框架以准备安装设备后立即完成设备的基础框架。工作人员继续加入远程测试和检查将支持船只运行的电气开关齿轮和面板。仍在继续为海岸警卫队开发各种意见,并向这些意见书批准继续进来。美国海岸警卫队的检查正在进行中,没有确定的主要问题。海岸警卫队每周在现场进行一到两次,检查自上次访问以来完成的工作,并签署了符合标准的工作。
Porto 7抽象的生物聚合物具有巨大的适用性,除了与化石能源相比,还具有可生物降解的来源和相对较短的寿命。其中一些生物聚合物是多羟基烷酸酯(PHAS),这是一类具有形成塑料膜的聚合物,类似于石化塑料。几项研究表明,微藻/蓝细菌是光合微生物的类型,可用于以较低的成本获取PHA,因为它们对生长的营养需求最少,并且自然是光自养生的,这意味着它们使用光和CO 2作为主要能源。此外,微藻具有高生产率的潜力,对环境条件的变化具有耐受性,并且可以在不适合农业的地区种植。这些光合微生物产生的这些PHA塑料膜可以是构建具有抗菌特性的功能性膜的替代方法,该膜与精油(著名的活性包装,包装行业的未来)一起融合在一起。这项工作展示了这些生物聚合物在包装行业中的生产,提取,生物合成和应用观点,例如与精油合并的薄膜。关键词:微藻,蓝细菌,生物塑料,生物聚合物,多羟基烷烃,精油。
葱代表着印度尼西亚家庭需求的关键商品;但是,他们的产量未能满足不断升级的需求。因此,提高生产的技术干预措施必须进行,其中一个有希望的机会是应用光合细菌(PSB)。可以通过直接的土壤输注或叶面喷涂来应用PSB。本研究旨在阐明各种PSB应用技术对局部Bantul葱品种的生长和产量的差异影响。从2022年9月至1222年12月进行。该研究采用完整的随机块设计(RCBD),并结合了一个施肥因子和四个层次:缺乏肥料,NPK肥料16:16:16 + psb通过浇注,NPK肥料,NPK肥料16:16:16:16:16:16:16:16 + PSB通过喷雾和NPK肥料16:16:16:16:16:16。每种治疗都进行了十种复制。在数据采集之后,采用了方差分析,然后以5%的错误率进行了诚实的显着差异测试(HSD Tukey)。结果表明,PSB的提供导致了根长度,叶绿素含量,硝酸盐还原酶活性,根和芽的新鲜和干重,每个团块的鳞茎计数,每个团块的新鲜和干重灯泡以及整体生产力。最佳的PSB应用技术被确定为涌入增长的媒体,导致葱生产率的31.28%提高了31.28%。