摘要:超分子表面活性剂为构造太阳能燃料合成系统的多功能平台,例如,通过将两亲光感应器和催化剂的自组装成各种超分子结构。然而,在太阳能燃料生产中对两亲光的光敏剂的利用主要集中在产生气态产物上,例如分子氢(H 2),一氧化碳(CO)和甲烷(CH 4),而甲烷(CH 4)的合成催化剂(TON)的合成催化剂属于合成催化剂,通常是在数百万范围内的合成催化剂。受到生物脂质 - 蛋白质相互作用的启发,我们在此提出了一种新型的生物杂交组装策略,该策略利用光敏剂作为表面活性剂形成胶束支架,该胶束支架与酶(即氢化酶),即半人工光合作用。具体而言,具有[ruthenium tris(2,2'-二吡啶)] 2+头组与酶相关时具有高光催化活性的表面活性剂,因为它们具有阳性带电的[RU] 2+中心的静电相互作用,可以与酶相互作用,以与酶相互作用,以使胶束上的电子转移在胶束eNzeme-Enzyzyzyzyzeme-Enzyzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme-Enzeme界面相互作用。时间分辨的吸收和发射
在植物适应区域中,复合叶子证明了自然的创造力。与简单的叶子不同,该叶子由单个未分离的叶片组成,复合叶子分为一个连接到公共rachis上的多个传单。这种独特的结构提供了一系列的生理和生态优势,提高了光合作用的效率并确保在各种环境中生存。在植物生物化学和生理学杂志的范围内,复合叶体现了一种精致的进化解决方案,用于优化光合作用和植物强度。
13. 为什么化学合成对深海中的自养生物和异养生物都很重要?答案各不相同。这是自养生物在被认为不存在生命的地方产生自身能量的机制。这些过程对异养生物很重要,因为异养生物依靠自养生物获取能量;反过来,自养生物又为丰富多样的群落的发展提供所需的食物。此外,海洋中任何导致所用化合物可用性发生变化的变化都可能对深海生物产生不利影响。深海中的许多生态系统都依赖于从海面落下的食物,这些食物是死物和被称为“海洋雪”的废物——但在存在化学喷口和渗漏的地区,从岩石和沉积物中升起的化学物质可提供能量。
太阳陈1,2,3,玛塔·霍卡4,菲利普·戴维5,Yaqi Sun 2,Fei Zhou 3,Tracy Lawson 5,Peter J. Nixon 4,Yongjun Lin 3,lu-niw Liu 2,6 * 1 Guangdong guangdong guangdong guangdong省级利用和药物保存和北部北部的省级北部。 512000,中国2分子与综合生物学研究所,利物浦大学,利物浦大学,利物浦L69 7ZB,英国3号国家遗传改善的国家主要实验室和国家植物基因研究中心,瓦兹胡农农业大学,武汉,瓦汉430070,430070,430070 2AZ,英国5日生命科学学院,埃塞克斯大学,科尔切斯特CO4 4SQ,英国6海洋生命科学学院和中国海洋深海洋多球和地球系统的边境科学中心,中国海洋大学266003,中国 *通讯 *通信:luning.luning.luiu@luning@liverpool.ac.ac.ac.uk(l.-n.-n.l.-n.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l>摘要尽管Rubisco是全球最丰富的酶,但由于其营业率低和区分CO 2和O 2的能力有限,碳固定效率低下,尤其是在高O 2条件下。为了解决这些局限性,包括蓝细菌和藻类在内的浮游植物已经进化了CO 2浓缩机制(CCM),这些机制涉及在特定结构内将Rubisco划分的rubisco,例如在藻类或藻类中的cyanobacteria或Pyrenacoids中的羧基助理。工程植物的叶绿体建立了类似的结构来分隔Rubisco,这引起了人们对改善作物植物中光合作用和碳同化的兴趣。在这里,我们提出了一种方法,可以通过遗传融合的超纤维纤维构成超级纤维绿色荧光蛋白(SFGFP)在烟草中有效地诱导内源性rubisco的凝结(Nicotiana tabacum)叶绿体。通过利用SFGFP的固有寡聚特征,我们成功地创建了类似pyrenoid的Rubisco冷凝物,这些冷凝物在叶绿体中显示动态的,类似液体的特性,而不会影响Rubisco组装和催化功能。转基因烟草植物与野生型植物相比表现出可比的自养生长速率和环境空气中的完整生命周期。我们的研究提供了一种有希望的策略,可以通过相分离调节植物叶绿体中的内源性Rubisco组装和空间组织,这为生成合成细胞器样结构的基础为碳固定的碳固定结构(例如羧化合物和吡啶样),以优化光合效率。关键字:Rubisco;碳固定;光合作用;叶绿体工程;相位分离;蛋白质冷凝;植物生物技术
光合作用是一种基本的生物学过程,是地球生命的基石,维持地球的生态系统并在全球碳循环中起关键作用。这种复杂的过程主要发生在植物,藻类和某些细菌中,将阳光转化为化学能,从二氧化碳和水中产生氧气和有机化合物。由浮游植物驱动的生物碳泵将碳从海面传输到更深的水域。当浮游植物死亡时,它们的有机物会沉入海底,有效地隔离了碳。这种自然机制强调了保护海洋生态系统并解决海洋酸化的重要性,这威胁了浮游植物种群。光合作用与全球碳循环之间的关系不仅对维持生命的维持至关重要,而且对于调节地球的气候和大气组成也至关重要(Alonso-Blanco等,2000)。
海洋光合作用有助于通过允许海洋植物和藻类从大气中吸收二氧化碳(CO 2)来减轻全球变暖。这些生物使用光合作用将阳光,水和Co 2转化为有机分子,从而释放氧作为副产品。这种机制隔离了大量的碳,将其存储在生物质和沉积物中,尤其是在红树林,海草和盐沼等“蓝色碳”栖息地中。此外,微观浮游植物在海洋表面层中进行大规模光合作用,从而显着助长了这一努力。保护和恢复海洋栖息地对于改善碳封存和防止气候变化至关重要。
葱代表着印度尼西亚家庭需求的关键商品;但是,他们的产量未能满足不断升级的需求。因此,提高生产的技术干预措施必须进行,其中一个有希望的机会是应用光合细菌(PSB)。可以通过直接的土壤输注或叶面喷涂来应用PSB。本研究旨在阐明各种PSB应用技术对局部Bantul葱品种的生长和产量的差异影响。从2022年9月至1222年12月进行。该研究采用完整的随机块设计(RCBD),并结合了一个施肥因子和四个层次:缺乏肥料,NPK肥料16:16:16 + psb通过浇注,NPK肥料,NPK肥料16:16:16:16:16:16:16:16 + PSB通过喷雾和NPK肥料16:16:16:16:16:16。每种治疗都进行了十种复制。在数据采集之后,采用了方差分析,然后以5%的错误率进行了诚实的显着差异测试(HSD Tukey)。结果表明,PSB的提供导致了根长度,叶绿素含量,硝酸盐还原酶活性,根和芽的新鲜和干重,每个团块的鳞茎计数,每个团块的新鲜和干重灯泡以及整体生产力。最佳的PSB应用技术被确定为涌入增长的媒体,导致葱生产率的31.28%提高了31.28%。
众所周知,植物激素的生长素和细胞分裂素是植物生长和发育的关键调节剂,它们是在芽和根,幼叶,种子,种子和水果的顶端分生组织中合成的[1-4]。它们对种子发芽,芽的形成和生长以及植物阶段的植物的不定和侧根表现出刺激的影响[1-4]。植物生物学家的大量关注致力于筛选合成起源的生长素和细胞分裂素的新有效类似物,以改善农业的生长并提高农作物的生产率。近年来,已经创建了新的生长素和细胞分裂素的新合成类似物,例如NAA(1-萘乙酸),2,4-D(2,4-二氯苯氧基酸),3,4-D(3,4-二氯苯甲乙酸),2,4,4,4,5-T
缩写:AI - 人工智能;简历 - 环伏安法; EV - 电动汽车; ETC – electron transport chain; FTIR - 傅立叶变换红外;温室气 - 温室气; GNS - 石墨烯纳米片; GQD-石墨烯量子点; H 2 ASE - 氢化酶; N 2 ASE - 氮酶; OER - O 2进化反应; ORR - O 2还原反应; PBR - 光生反应器; PV - 光伏; RS - 拉曼光谱; SI - 特刊; TEM - 透射电子显微镜; VIPV - 车辆集成光伏; XRD - X射线衍射。致谢:我们要感谢所有参与者和作者的出色贡献,以及对审稿人的洞察力提出的出色建议,这些建议显着提高了手稿的质量。此外,我们感谢国际氢能协会(IAHE)和国际光合作用研究协会,以及约翰·W·谢菲尔德(John W.这项工作是由科学和高等教育部资助的国家任务的一部分(主题号122050400128-1),并得到天津合成生物技术创新能力改进项目的支持(TSBICIP-BRFI-009,TSBICIP-IJCP-001-03至BK)。利益冲突:作者声明他们没有利益冲突。
人造光合作用,类似于受鸟类飞行的启发的飞机的创新发展,这证明了人类通过模仿自然过程对技术解决方案的追求。otto lilienthal在完成人类航班旅程中标志着不动力的飞机上的第一个记录的,反复的飞行中的历史成就,说明了自然界的学习和复制自然机制的能力。对可再生能源的探索是减轻我们对传统化石燃料的依赖的战略当务之急,这种燃烧不仅释放了有害气体,而且对我们珍贵的自然资源的耗尽有了基本贡献。