摘要 __________________________________________________________________________________________________ 量子生物学是一个创新领域,它将量子力学和生物学相结合,探索量子现象如何影响生物过程。本综述讨论了量子生物学的基本原理、它在医学、材料科学和能源生产中的潜在应用,以及其进展的伦理影响。通过了解生命的量子复杂性,我们可以深入了解疾病机制,开发创新材料并利用可持续能源。量子力学对于理解原子和亚原子行为至关重要,它是量子生物学的基础,量子生物学研究光合作用、嗅觉和酶催化等过程。关键原理包括叠加、纠缠和隧穿,这些原理可以提高生物效率、灵敏度和精度。量子生物学的潜力涵盖各个领域:在医学和药学中,它可以带来新的诊断工具和疗法;在材料科学中,它可以启发电子、储能和传感的量子材料;在能源生产中,它可以通过光合作用的见解为可持续能源发展提供信息。然而,道德考虑至关重要。量子增强医疗技术可能会扩大医疗保健差距,而先进的量子材料可能会对社会产生复杂的影响。负责任的发展需要开放的对话和道德框架。量子生物学的未来充满希望,持续的研究和跨学科合作有望产生创新发现,促进可持续和繁荣的未来。关键词:酶催化、医学、光合作用、量子生物学、量子相干性、量子隧穿。
作物野生亲戚(CWRS)与驯养的作物(农业园艺,药物和芳香,观赏性和林业物种)表现出密切的关系,并形成了农作物基因库的一部分,具有基因交换的潜力。大量的CWR是潜在的捐助者,但受到驯养作物的关注少。cwrs也遭受了遗传侵蚀,导致遗传多样性严重丧失(Maxted等,2006; Von Wettberg等,2020)。驱动遗传多样性损失的因素已分为对进化力作用的远程驱动因素和近端驱动因素:突变,迁移/基因流,遗传漂移和选择(Khoury等,2022)。在此研究主题中,Trainin等人。从解剖学的角度记录了参与选择非色的光合作用性状的进化力,与商业杏仁相比(P. Dulcis(Mill。D. A. Webb)。P.Arabica的茎有利于STEM光合作用,以通过多种策略获得额外的碳增益。Higher stem photosynthesis in P. arabica than in P. dulcis is attributed to selective anatomical features such as the presence of a high density of sunken stomata in their stems, a chloroplast-rich mesophyll-like parenchymatous cell layer, higher chlorophyll content, better chlorophyll fl uorescence and quenching parameters, and its ability to ef fi ciently regulate water loss at温度升高。
光合作用本质上是一个至关重要且普遍存在的复杂物理过程,在某些生物(例如植物和细菌)中,太阳的辐射覆盖了,并转化为生存所需的必要碳水化合物[29,35]。从物理和化学的角度来看,这是一个复杂的过程,它通过几个阶段进行,涉及几种物理现象,即光吸收,能量传输,电荷分离,光磷酸化和二氧化碳固定[17]。在过去的40年中,人们对这种现象的理解取得了很大进步,随着许多光合型复合物的结构的物理表征[7,12,48]。对此类过程的理解将允许能源领域的许多潜在的巨大影响工业突破,从太阳能电池板的能量捕获[32]的巨大效率提高到人工轻降水设备的构建[32]。光合作用始于光子的吸收。它通过激发色素分子而发生,该分子充当蛋白质分子与光合作用仪相连的轻度收获天线。Photosynthetic色素 - 蛋白质复合物以分子电子激发的形式将吸收的阳光能量转移到反应中心,在那里电荷分离引发了一系列的生化过程[35]。这项工作集中在光合作用的第一个阶段,更确切地说,吸收的辐射从天线传输到反应中心,该中心以所谓的激子能量转移(EET)的形式进行,如图1所示。
生物的生物学多样性:生命世界什么是生物?生物多样性;需要分类;生命的三个领域;物种和分类层次结构的概念;二项式命名法。生物分类五个王国分类; Monera,Protista和Fungi分为主要群体的显着特征和分类;地衣,病毒和病毒。植物王国的显着特征和植物分为主要群体 - 藻类,苔藓植物,pteridophyta和Gymnospermae。(显着和区分特征以及每个类别的一些示例)。动物界的显着特征和动物的分类,直接到门水平的非配合物以及弦弦到班级水平(显着特征和区分每个类别示例的特征)。(不应显示活动物或标本。)动物和植物中的结构组织:花序和花朵的开花植物形态的形态,01家族的描述:茄科或莉莉亚科(与实践课程的相关实验一起处理)。动物组织中的结构组织。细胞:结构和功能细胞 - 生命细胞理论和细胞的单位,作为生命的基本单位,原核和真核细胞的结构;植物细胞和动物细胞;细胞包膜;细胞膜,细胞壁;细胞细胞器 - 结构和功能;内膜系统,内质网,高尔基体,溶酶体,液泡,线粒体,核糖体,质体,微生物;细胞骨架,纤毛,鞭毛,中心菌(超微结构和功能);核。生物分子活细胞的化学成分:蛋白质,碳水化合物,脂质,核酸的生物分子,结构和功能;酶类型,性质,酶作用。单元格:结构和功能;细胞周期和细胞分裂细胞周期,有丝分裂,减数分裂及其意义。植物生理学的光合作用在高等植物的光合作用中,作为自养营养的一种手段;光合作用的位点,参与光合作用的颜料(基本思想);光合作用的光化学和生物合成阶段;循环和非循环的辐射磷酸化;化学含量假设;光振动; C3和C4途径;影响光合作用的因素。植物中气体交换的呼吸;细胞呼吸 - 糖酵解,发酵(厌氧),TCA循环和电子传输系统(有氧);能量关系 - 产生的ATP分子的数量;两性途径;呼吸商。植物 - 生长和发育生长调节剂 - 生长素,吉布素,细胞分裂素,乙烯,ABA。人类生理学呼吸和交换动物中气体的气体呼吸器官(仅回想);人类的呼吸系统;呼吸机制及其在人类中的调节 - 气体的交换,气体的运输和呼吸的调节,呼吸体积;与呼吸有关的疾病 - 哮喘,肺气肿,职业呼吸系统疾病。体液和血液的循环组成,血液组,血液凝结;淋巴的组成及其功能;人类循环系统 - 人心脏和血管的结构;心脏周期,心输出量,心电图;双循环;心脏活动的调节;
使用DNDC(denitrifi阳离子分解)模型(版本9.5)来预测多年生草的蒸腾和光合作用速率(红三叶草和提摩太教)的差异,以及一种砂质苏普固醇的自亲呼吸。在模型实验中使用了两个生长季节的输入参数(从2010年5月1日至2015年8月31日至2015年8月31日)。在2010年,该周期的平均空气温度为14.1±3.3°C,总降水量为0.1796 m,而在2015年,平均空气温度为16.8±5.5°C,总降水量为0.538 m。这些气象参数对2010年的植物不利,2015年有利。结果表明,DNDC模型充分预测了多年生草的总和平均蒸腾率的天气引起的差异:0.12204 m。和0.00099±0.00040 M.Day -1分别在2015年有利的气象条件下和0.05969 m。和0.00049±0.00035 m.day -1,在2010年不利的气象条件下。植物的每日蒸腾率的动力学显着(r = 0.34 p <0.001)与土壤水含量仅在不利的气象条件下相关。模拟光合作用速率的平均值等于2015年的84.4±27.9 kg.c.c.hha -1。天-1,2010年52.3±23.4 kg.c.hha -1 .day -1 .day -1 -1在2010年。在两种天气情况之间的光合作用速率的平均值中存在显着的差异(p <0.001)。单向方差分析(ANOVA)的结果表明,在有利的(8.14±2.25 kg.c.h -1 .day -1)下,自养呼吸的速率比不利(8.14±2.25 kg.c.ha -1 .day -1)高于不利(5.17±2.17±2.19±2.19±2.19 kg.c.c.ha -1 .day -1 .day -1 .day -1)。
然后,该串联CO 2电解系统用于通过电农业从CO 2衍生的乙酸盐产生可持续食品。在数千年中,人类一直依靠光合作用来满足我们的热量需求,以相对较低的太阳能效率(〜1%),这导致了今天地球可居住的土地的一半用于农业。将通过工程粮食作物来绕过光合作用,并利用乙酸乙酸酯来提供更有效的全球粮食系统的根本性重新构想,以提高醋酸乙酸盐的异性生长,从而通过一定的数量级来提高太阳能到作物的效率。进行分析以证明这些效率提高如何导致美国农业土地使用情况下的94%降低,从而使美国近一半的一半以促进自然碳固存的努力。也可以通过与精确发酵技术耦合CO 2电解来提高我们的食品系统效率,以生产动物蛋白,而无需高效和资源密集的动物农业。
1.将光能转化为电能和/或氢的装置,包括反应器,其中反应器包括阳极隔室(2),阳极隔室包括阳极材料和阴极隔室,阳极隔室包括a)能够氧化电子供体化合物的阳极嗜性微生物,和b)能够通过光合作用将光能转化为电子供体化合物的活植物(7)或其部分,其中植物的根部(8)区域基本上位于阳极材料中。11.将光能转化为电能和/或氢的方法,其中将原料引入包括反应器的装置中,反应器包括阳极隔室(2)和阴极隔室,阳极隔室包括a)能够氧化电子供体化合物的阳极嗜性微生物,和b)能够通过光合作用将光能转化为电子供体化合物的活植物(7)或其部分,其中微生物生活在植物的根部(8)区域或其部分的周围。 12.根据权利要求11的方法,其中电子给体化合物是有机化合物。
微生物散发出大量挥发性化合物(VC),可促进植物的生长和光合作用以及强烈的发育和代谢变化。最近,我们显示了小于Ca的小分子质量的少量VC。45 DA是植物对微生物挥发性排放的反应的重要决定因素。在拟南芥中,磷酸葡萄糖异构酶PGI1的质体同工型介导光合作用,代谢和发育,这可能是由于它参与了血管组织中类异端衍生信号的合成。就像在野生型(WT)植物中一样,小型VC促进生长和光合作用,以及PGI1占用PGI1-2植物中的淀粉和CK积累。小型真菌VC处理植物的叶片转录组的显着变化涉及对GPT2的转录水平的强烈上调(AT1G61800),该基因代码为塑料G6P/PI转运蛋白。我们假设PGI1对微生物挥发性排放的独立反应涉及GPT2作用。为了检验这一假设,我们表征了WT,GPT2 -NULL GPT2-2,PGI1 -NULL PGI1-2和PGI1-2GPT22-2植物对小真菌VC的反应。此外,我们还表征了在血管组织和根尖端特异性启动子对小真菌VC的控制下表达GPT2的PGI1-2GPT2-2植物的反应。我们发现,PGI1-2GPT2-2植物的小型VC促进的变化明显弱于WT,GPT2-2和PGI1-2植物,但通过血管和根尖端特异性GPT2表达恢复到WT水平。蛋白质组学分析未检测到VC暴露叶片中GPT2蛋白水平的增强。这项工作中提出的结果提供了证据,表明,在降低PGI1活性的条件下,GPT2的长距离作用在植物对小型VC的反应中通过涉及重置光合作用相关蛋白质组的叶片中与叶片中的蛋白质组的机制以及复杂的GPT2法规起着重要作用。
co 1:获得有关微生物的营养运输和生长特征的知识以及能量产生的生存机制。CO 2:了解中央代谢途径,能源生产和生长特征。CO 3:获得有关绿色,紫色细菌和蓝细菌的有氧呼吸和光合作用的见解。co 4:通过微生物中不同代谢途径分析厌氧呼吸和发酵的概念。