对于高质量的放射科来说,X 射线成像的持续质量控制 (QC) 至关重要。有效的 QC 工作是一个持续的过程,需要医学物理学家耗费大量时间从多个成像系统收集数据并进行费力的分析。重复和拒绝的 X 射线图像会导致患者受到不必要的辐射暴露并降低放射科的效率,因此延迟拒绝的 X 射线图像是成功的 QC 程序的关键组成部分。我们认为深度学习 (DL) 算法可以最大限度地减少工作量并提高 QC 程序的准确性。在此海报中,我们介绍了对 CXR 图像执行自动 QC 检查的 DL 算法的开发和性能评估。我们重点关注 (1) 使用的采集协议是否与获取的正面 CXR 图像匹配,以及 (2) 正面 CXR 定位是否可以接受?
人工智能 (AI) 领域的发展是“机器适应新情况、处理新兴情况、解决问题、回答问题、设计计划和执行各种其他功能的能力,这些功能需要人类通常具有的某种程度的智能 (Coppin, 2004, p. 4)”,在第四次工业革命 (Vázquez-Cano, 2021) 之后全速前进。几种具有惊人性能的创新工具相继推出;例如,最新版本的 ChatGPT (GPT-4o) 就在我们完成本文之前发布。然而,正如理论物理学家斯蒂芬霍金曾经说过的那样,“强大人工智能的崛起将是人类有史以来最好的事情,也可能是最糟糕的事情。我们还不知道哪一个”。
1940 年 9 月 20 日,数学家兼物理学家诺伯特·维纳 (Norbert Wiener) 写信给美国战争研究的领头人万尼瓦尔·布什 (Vannevar Bush),信中写道:“我……希望您能找到一些我可以在紧急情况下派上用场的活动。”当时,英国正遭受着无情的空袭,纳粹入侵似乎迫在眉睫。维纳在各个学科领域都全力支持技术防御。他建议改进布什的计算设备,即所谓的微分分析仪,以便更快地设计从飞机机翼到弹道炮弹等战争物资。更具体地说,他重申了之前的一项提议,即盟军将装有液化乙烯、丙烷或乙炔气体的空爆容器发射到空中,将大片天空笼罩在爆炸中。
被邀请的演讲者包括赢得全球化的普利策奖作家兼记者汤姆·弗里德曼(Tom Friedman);埃里克·坎德尔(Eric Kandel),医学博士,博士,诺贝尔奖获得者谈论记忆; Lisa Randall博士,粒子物理学家,讨论多维宇宙; Sally Ride,PhD,第一位美国女宇航员,鼓励年轻人,尤其是女性进入科学领域;迈克尔·加扎尼加(Michael Gazzaniga)博士,神经伦理学神经科学家和医学博士Johannes Schramm,神经外科医师,评论神经外科医生之间的国际合作。Ride博士揭幕了Louise Eisenhardt的演讲,该讲座是为了纪念《神经外科杂志》的第一任编辑,迄今为止是AAN的唯一女主席。为所有成员提供了一本纪念Aans历史的纪念书,以庆祝这75周年。
约翰·冯·诺依曼(/vɒn ˈnɔɪmən/;匈牙利语:Neumann János Lajos,发音为 [ˈnɒjmɒn ˈjaːnoʃ ˈlɒjoʃ];1903 年 12 月 28 日 - 1957 年 2 月 8 日)是一位匈牙利裔美国数学家、物理学家、计算机科学家、工程师和博学者。冯·诺依曼被普遍认为是他那个时代最重要的数学家,被称为“伟大数学家的最后代表”;他将纯科学和应用科学融为一体。他在许多领域做出了重大贡献,包括数学(数学基础、泛函分析、遍历论、表示论、算子代数、几何、拓扑和数值分析)、物理学(量子力学、流体动力学和量子统计力学)、经济学(博弈论)、计算机(冯·诺依曼架构、线性规划、自复制机器、随机计算)和统计学。
现在,我并不是神经网络或其他形式的人工智能领域的专家。相反,作为一名天文学家和物理学家,我以用户的身份来讨论这个话题。随着望远镜技术的进步,尤其是电子探测器的进步以及处理这些探测器信号的方式,天文学现在正被“大数据”淹没……数据量如此之大,以至于我们以前处理结果的方式根本行不通了。(我年纪大了,还记得我们曾经很高兴能有任何数据!)相反,我们依靠巧妙的计算算法(我没有参与编写)来筛选我们观察到的东西。该算法可能表明一个物体可能是 X 射线源,另一个物体可能是行星形成的地点,等等。
- 量子特性可用于显著增强传感和测量技术,实现超越传统物理学所能达到的精度测量。据美国前理论物理学教授、专门研究量子传感和量子成像的乔纳森·道林和澳大利亚理论量子物理学家、专门研究量子反馈控制和量子测量的杰拉德·米尔本称,量子传感将对导航、射频通信、地质勘探和医疗诊断等领域产生重大影响。他们的研究表明,量子传感将对环境变化、引力场、电磁辐射甚至分子结构提供更准确、更灵敏的检测。由于量子传感器依靠量子粒子进行测量,因此它们本质上比传统传感器更灵敏,从而引入了大量新的应用、数据洞察和决策能力。
职业描述 3d 建模师 ABBOT ABLE SEAMAN 砂轮成型工 磨料涂层布和纸制造商 磨料搅拌机 学术事务院长 学术事务主管 学术顾问 接入网络经理 手风琴制造师 手风琴调音师 会计师(不含税务会计师) 会计分析师(不含税务) 会计和计算机技工 会计簿记员 会计机操作员 会计经理(不含税务) 会计经理(财务部) 会计主管 会计程序员 会计软件经理 会计分析员 会计助理 会计文员 会计收款员 应付(或应收)账款 簿记员 会计科目主管 乙炔灌装工 乙炔厂操作员 酸抛光工(玻璃装饰) 酸化剂(油气井) 隔音工 声学工程师 声学物理学家 采访员(图书馆)
成为物理学家是一种荣幸。自从我小时候第一次从当地图书馆借物理课本以来,我就一直着迷于它如何揭示和改变我以为我了解的世界。在我的一生中,物理学支撑了从通信到癌症治疗、从计算到我们对宇宙本质的理解等一切事物。我们没有人独自研究物理。我们的理解首先由教师(他们本身就是我们社区的关键成员)解锁,然后通过与其他物理学家的接触分享和深化。我们中的一些人正在寻找基本问题的答案,其他人则利用这些见解并将其应用于产品或零碳能源等紧迫问题。我们所有人都依赖于我们更广泛的社区——无论是我们目前所属的物理学家社区,还是未来的物理学家社区——都对人才开放
提供更好的治疗影响,增加的生物利用度,降低给药频率以及副作用的低发生率。[2]在纳米级水平上的材料的创建和修饰以产生具有独特特性的产品被称为纳米技术。1959年,Cal技术物理学家Richard P. Feynman预测了纳米材料。他说:“底部有很多空间,”这意味着纳米技术进一步进步的秘密是从底部开始,然后努力到纳米级。最近,对纳米材料引起了很多兴趣。这些是在1-100纳米内至少一维的材料。[3] Nanosponge是一种现代材料类别,是一种类似于网格的纳米结构,它会改变许多疾病的治疗方式。与微物质相比,纳米传播的直径约为10至25 µm,其空隙范围在5到300 µm之间,小于1 µm