超导磁性和超导性中量子磁杂质的动力学可能是物质的两个竞争阶段。但是,它们的相互作用可能导致物质的新外来阶段,例如拓扑超导性,一种能够藏有主要粒子的物质状态,这是他们自己的反粒子。作为拓扑超导性在本质上似乎并不那么频繁,一种策略是基于在超导底物上建立磁杂质(Fe,Co,Mn,Mn,…)的工程[1]。单个杂质与超导体之间的相互作用导致差距内局部和几乎极化的结合状态[2]。控制和功能化这些量子结合状态是拓扑超导性的途径,但也要实现Qubits [3]。磁杂质的大多数理论描述都依赖于经典的自旋模型,该模型简单地描述了激发光谱,但是人为地打破了时间反转对称性,并且无法正确重现基态退化。尽管许多实验性和理论作品已致力于磁性和超导性之间的相互作用,但几乎没有研究这些结合状态的动力学。由于外部驾驶对于实验探测动力学以及操纵系统拓扑阶段的工具很重要,因此非平衡理论将非常有价值。该提案是我们与实验者在研究原子规模旋转动力学的萨克莱高原上合作的一部分。17,384(2022)。Zhu,修订版在实习中,我们建议研究量子自旋杂质的简单模型的动力学,该模型与零波段极限中的超导底物相互作用[4]并受到时间相关的磁场。[1] L. Schneider等人,自然物理学17,943(2021);同上大自然纳米。[2] A. V. Balatsky,I。Vekhter和J.-X.mod。物理。78,373(2006)。[3] A. Mishra,P。Simon,T。Hyart和M. Trif,Yu-Shiba-Rusinov Qubit,Phys。修订版x Quantum 2,040347(2021)。[4] K. Franke和F. von Oppen,Phys。修订版b 103,205424(2021)。请,指出哪种专业(ies)似乎更适合于该主题:凝结物理物理学:是软物质和生物物理学:否量子物理学:是的理论物理学:是YES
辐射下微电子的多尺度模拟:从材料到电路级 N. Richard、D. Lambert、N. Rostand、J. Lomonaco、J. Parize、G. Charbonnier、T. Jarrin、C. Simha、M. Raine、S. Martinie、A. Bournel、C. Inguimbert、V. Goiffon、A. Hemeryck、A. Jay、L. Martin-Samos、G. Herrero-Saboya
标题:等离子体-半导体界面处的电离波 名字:戴维 姓名:PAI 实验室:等离子体物理实验室 (LPP) 电子邮件:david.pai@lpp.polytechnique.fr 网页:https://www.lpp.polytechnique.fr/-David-Pai- 研究领域: 主要领域:激光和等离子体物理 次要领域:材料科学 方法:大气压等离子体、表面等离子体、纳秒放电、等离子体诊断(例如光发射光谱、电场诱导的二次谐波产生、汤姆逊散射)、材料化学诊断(例如拉曼和光致发光光谱) 博士课程主题:等离子体-表面相互作用是许多类型等离子体物理学的关键要素。对于非平衡等离子体,其中电子的温度比原子和分子的温度高得多,一种常见的现象是表面电离波 (IW)。使用复合材料代替块体金属/电介质作为电极或传播表面可能会产生新的相互作用。特别是,与半导体相关的光电效应可以使基于微电子中常用的绝缘体上硅 (SOI) 技术的 IW 沿表面传播均匀化。我们的假设是气相和电子空穴 IW 沿 SOI 界面相邻地共同传播。
4 化学课程 17 4.1 精细化学与药物..................................................................................................................................................................................................17 4.2 高级无机化学..................................................................................................................................................................................................................................17 4.3 化学与无机材料..................................................................................................................................................................................................................19 4.4 有机化学..................................................................................................................................................................................1 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.11 按需材料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...