过去几年,纳米纤维素 (NC),即纳米结构形式的纤维素,已被证明是当代最突出的绿色材料之一。由于 NC 材料具有丰富、高长宽比、更好的机械性能、可再生性和生物相容性等吸引人的优异特性,人们对此的兴趣日益浓厚。丰富的羟基官能团允许通过化学反应进行广泛的功能化,从而开发出具有可调特性的各种材料。在这篇综述中,基于对最新研究的分析(特别是过去 3 年的报告),描述和讨论了纳米纤维素,特别是纤维素纳米晶体 (CNC) 的制备、改性和新兴应用的最新进展。我们首先简要介绍纤维素的背景、其结构组织以及纤维素纳米材料的命名法,供该领域的初学者参考。然后,详细阐述了生产纳米纤维素的不同实验程序、其特性和功能化方法。此外,还介绍了纳米纤维素在纳米复合材料、Pickering 乳化剂、木材粘合剂、废水处理以及新兴生物医学应用中的一些最新和新兴用途。最后,讨论了基于 NC 的新兴材料的挑战和机遇。
由于它们在生物制造,吸附,催化和能量转化应用方面具有巨大的潜力,因此人们对制造4D印刷的层次多孔结构从分子水平到宏观尺寸有很大的关注。为此,对于设计创新的构造,必须了解4D打印中智能材料的结构功能关系,而这些构建体不限于任何特定的自由度。在这里,我们报告了通过3D打印pickering型臀部的3D打印,以制造热响应性大量聚合聚合物高的内相乳液(Poly-hipes)。基于水的皮带油的油墨含有甲基纤维素/kappa-carrageenan混合物(非交叉链接)作为连续相,该相通过纤维素纳米晶体和纤维素纳米纤维的混合胶体稳定。基于皮克希的墨水显示出具有出色粘弹性界面特性的非线性和时间依赖性振动响应。在基于热融化的基于挤出的印刷过程中,Pickering-iphes的原位交联很容易地制造出多挑战型,这产生了一系列3D打印的热反应层次层次MAC ROPOLOPORFORFURES。4D打印的对象提出了高度相互连接的敞开多孔结构,该结构本质上具有热响应性。此外,这些4D结构显示出高机械强度,并具有出色的自我恢复性能。我们的结果提供了通过调节乳液配方在不同温度下开发具有形状记忆特征的热响应MAC rop的前景。
January 7, 2025 To: Jennifer Jastremsky, Zoning Administrator Approved Date From: Maryann Pickering, AICP, Planner III (801) 576-6391 or maryann.pickering@draperutah.gov Re: Dillman Square — Site Plan Amendment Request Application No.:2024-0246-SP申请人:Kim Webb,代表方法Studio LLC项目位置:大约715 E. E. 12300 South Current分区:CN(邻里商业)区域面积:约1.11英亩(约48,351英尺2)的要求:要求批准在现场计划预定的CN区域中有关新开发的现场计划预定的批准。摘要和背景此申请是批准在12300 South的北侧约1.11英亩的修订现场计划的请求,约为715 E. 12300 South(展品B和C)。该属性当前是分区的CN。申请人要求批准修订的现场计划,以允许开发两(2)个新零售大楼。Dillman Square细分于2002年5月1日记录,最初的场地计划于2004年1月15日批准。自那时以来,该站点已经分阶段开发,并且经过了几个细分和现场计划应用。主题网站是
对于四倍体柳枝稷,我们将单倍体定义为两个亚基因组的基因组拷贝丢失。双单倍体技术需要有效的 2n 诱导系统以及随后的基因组加倍,并将提供新的育种机会,例如为商业杂交生产系统选择高性能自交系。不同柳枝稷亚种群的杂合亲本之间的杂交可产生生物量产量的杂种优势(Bhandari 等人,2017 年;Martinez-Reyna 和 Vogel,2008 年;Vogel 和 Mitchell,2008 年)。然而,由于柳枝稷中活跃的遗传不相容系统以及在获得的相对较少的自交基因型中可能发生的近交衰退和不育,自交系尚未开发。如果有更好的自交系,开发高产单交杂交种将是一种可选的育种方法。由于自交系的性能通常与其杂交种的性能相关,因此选择高产自交系可能具有优势(Hayes & Johnson,1939;Sprague,1977)。此外,DH 技术将促进所需性状、外来基因、转基因、染色体片段或整个染色体的渗入和稳定(Devaux & Pickering,2005;Forster & Thomas,2005)。
学院名称 招收学生 Alejandro Aballay PhD Moran Amit 两者 Michael Beierlein PhD Wei Cao 两者 Anjali Chauhan MS John H. Byrne PhD Julio Cordero-Morales PhD Pramod Dash PhD Carmen W. Dessauer PhD Fabricio H. Do Monte PhD Kristin L. Eckel-Mahan 两者 Laura Goetzl 两者 David R. Grosshans 两者 Ruth Heidelberger PhD Jian Hu 两者 Vasanthi Jayaraman PhD Wen Li PhD PhD Eunhee Kim 两者 Gab Seok Kim 两者 Jung Hwan Kim 两者 Keran Ma 两者 Sean P. Marrelli PhD Rodrigo Morales 两者 Louise D. McCullough PhD Yuan Pan PhD Chirag Patel PhD Andrew Pickering 两者 Xuefang Sophie Ren 两者 Rodney Ritzel 两者 Yanning Rui PhD Andrea Stavoe PhD Nitin Tandon 两者 Qingchun Tong PhD Andrey S. Tsvetkov PhD Akihiko Urayama 两者 Valeria Vasquez-Robaina 两者 Kartik Venkatachalam 均为 Edgar T. Walters 博士 吴嘉谦 博士 严久胜 均为 吴龙军 均为 张胜 博士
引言细菌纤维素(BC)是由一些微生物产生的合成物质,其在生物医学和食品行业中替代植物纤维素的潜力很高(Zhao等,2018)。在生物医学中,BC用作组织工程,人造皮肤,伤口敷料和药物输送载体的材料(Rajwade等,2015)。bc在食品行业中被商业化为Nata de Coco,并用作脂肪替代品,人造肉和稳定剂,以用于皮带乳液(Azeredo等,2019)。BC具有环保生物聚合物的出色特征,该生物聚合物在全球经济中起着至关重要的作用。它用于许多行业,例如纺织品和造纸领域(Shi等,2014)。与植物纤维素相比,BC含有高纯度,因为它没有木质素和半纤维素。此外,卑诗省具有高度的聚合,高结晶度,良好的拉伸强度和高水位的能力(Krystynowicz等,2002)。由木浆产生的纤维素可能带来环境问题,例如森林砍伐。由于该因子,从细菌合成的纤维素被选择作为植物纤维素的替代品(Hashim等,2021)。
The objective of this study was to develop hybrid nanoparticles (HNCs) from two monomers, methyl methacrylate (MMA) and butylacrylate (BA), using miniemulsion polymerization method in the presence of Algerian Montmorillonite (AMMT), and different types of surfactants, such as the double-chain cationic didodecyldimethylammonium bromide (DDAB),undecafluoro n-戊酰十氧基乙烯醚(C 5 F 11(EO)10)和混合表面活性剂系统(FSO-100/DDAB)。少见研究,尤其是关于获得去角质杂交纳米颗粒的可能性。在这项研究中,优化了聚合反应的几个参数,并允许得出结论: MMA-CO BA,c)用于采条微型乳化聚合,修饰的MMT充当表面活性剂,并构成了粘土交给粘土的交流,并稳定了微型乳化剂的粒子 - 溶剂界面。粘土的百分比越高,较不稳定的是微型乳液,而其多分散性越高,d)最稳定的纳米颗粒是用AMMT-HTA +重量为0.5%获得的,这是去角质纳米复合材料的特征。添加2%的N六烷烷(N-HD)导致尺寸降低了50%,表明该化合物在微乳液中稳定颗粒的有效性。
• 2010 年至 2030 年间,需求将温和增长(约 15%)。• 安大略省将在 2014 年实现无煤化。安大略省将在 2014 年前消除燃煤发电,实现政府温室气体减排目标的绝大部分。Thunder Bay 煤电厂的两台机组将转换为天然气,Atikokan 将转换为生物质。Nanticoke 的另外两台机组将于 2011 年关闭。• 政府致力于清洁、可靠的核电,使核电占全省电力供应的约 50%。为此,达灵顿和布鲁斯核电站的机组需要进行现代化改造,该省将需要在达灵顿新建两台核电机组。投资翻新并延长 Pickering B 电站的使用寿命至 2020 年将为安大略省人民带来丰厚回报。• 安大略省将继续扩大其水力发电能力,目标是达到 9,000 兆瓦。这将通过新设施和大量投资来实现,以最大限度地利用安大略省现有的设施。• 安大略省的目标是到 2018 年,风能、太阳能和生物能源等清洁可再生能源达到 10,700 兆瓦(不包括水力发电)——通过扩建输电线路和最大限度地利用现有系统来实现。安大略省将通过继续实施 FIT 和 microFIT 计划继续发展清洁能源经济。
• 2010 年至 2030 年间,需求将适度增长(约 15%)。 • 安大略省将在 2014 年实现无煤化。安大略省的能源供应结构中消除燃煤发电将占政府在 2014 年前实现温室气体减排目标的大部分。Thunder Bay 煤电厂的两台机组将转换为天然气机组,Atikokan 将转换为生物质机组。Nanticoke 的另外两台机组将于 2011 年关闭。 • 政府致力于清洁、可靠的核电,该核电仍将占全省电力供应的约 50%。为此,达灵顿和布鲁斯核电站的机组将需要现代化,该省将需要在达灵顿新建两台核机组。投资翻新并延长 Pickering B 核电站的使用寿命至 2020 年将为安大略省人民带来丰厚回报。 • 安大略省将继续增加水力发电能力,目标是达到 9,000 MW。这将通过新设施和大量投资来实现,以最大限度地利用安大略省现有的设施。• 安大略省的目标是到 2018 年,风能、太阳能和生物能源等清洁可再生能源达到 10,700 兆瓦(不包括水力发电)——通过扩建输电线路和最大限度地利用现有系统来实现。安大略省将继续通过继续实施 FIT 和微型 FIT 计划来发展清洁能源经济。
此通信更新的目的是告知理事会,以前在2023年11月15日授予一般问题委员会的电池储能系统设施的支持者并未根据最近的省级采购过程提出一项建议。其次,此更新是为了告知理事会,正在对理事会的2023年11月22日的报告进行工作,该报告指示工作人员审查最近的电池储能系统建议,从气候变化,经济开发和土地使用的角度进行评估,并将其报告给计划委员会,以便为理事会提供建议的标准,以考虑未来的电池储能系统储存系统的建议。背景独立电力系统运营商是1998年《电力法》中建立的非营利性公司实体,该实体在安大略省能源部长的管辖下。独立的电力系统操作员在电力领域提供服务,包括管理电力流和计划以满足未来的能源需求。独立的电力系统运营商预测,该省将进入一段时间增加的电力需求期限,部分原因是皮克林核电站退休,其他核发电单元的翻新以及现有设施的合同到期。为了满足这一增加的需求,独立的电力系统运营商提出了长期要求,要求提案确保1600兆瓦的额外储能。于2023年春季推出