57. 自然语言处理的最大熵方法 AL Berger、SA Della Pietra、VJ Della Pietra | 计算语言学协会,1996 年出版,36 页
对于 HRM 检测,采用补充表 S1 中报告的优化内含子引物。PCR 在 20 μ L 中进行,其中包含 100 ng DNA、0.5 单位 HotStart Taq 聚合酶以及 1x 缓冲液(Qiagen,德国希尔登)、1.5 mM MgCl 2、800 μ M dNTP、300 nM 每种引物和 1x EvaGreen(Idaho Technologies,犹他州盐湖城)作为插入染料。循环和 HRM 分析在 Rotor-Gene ™ 6000 实时分析仪上进行,采用以下热方案:95°C 持续 15 分钟(一个循环);95°C 持续 30 秒,55°C 持续 30 秒,72°C 持续 30 秒(50 个循环);72°C 持续 10 分钟(一个循环);熔化温度从 85°C 升至 95°C,每秒上升 0.1°C。使用相关的 Rotor-Gene ™ 6000 系列软件 (v1.7.87) 分析数据。标准化条在前导范围的 88°C 和 88.5°C 之间,在尾随范围的 92.5°C 和 93°C 之间,置信阈值为 90%:如果 HRM 图超出了指定参考基因型的置信范围,则软件会将样本识别为变异。图 S1A 显示了健康受试者和 3 名 MPN 患者的 DNA 样本的 HRM 图谱,这些样本先前已通过微电子微芯片分析进行了基因分型(未显示数据)。患者 PV02_113 为 MPL (W515K) 纯合子(TGG>AAG 转换),其 HRM 曲线相对于野生型序列向左移向较低温度,这与纯合变体导致熔解温度 (Tm) 降低的预期一致。患者 PV04_494 为 MPL (W515A) 纯合子(TGG>GCG 转换)等位基因
CMS 隶属于 SCM 集团,该集团在加工多种材料(木材、塑料、玻璃、石材、金属和复合材料)的技术方面处于全球领先地位。该集团的公司遍布世界各地,是各个产品领域主要制造业坚实可靠的合作伙伴:从家具到建筑、从汽车到航空航天、从航海到塑料加工。 SCM 集团支持并协调三个大型专业生产中心的工业卓越体系的发展,这些生产中心拥有超过 4,000 名员工,业务直接遍及五大洲。 SCM集团代表了世界在工业流程机器和零部件设计和制造方面最先进的技术。
ŽAVSC,Nicklast,John Jumperd,John Clifford,Bey O Jumpwood,Chrayer,Craig,Mother Zhavy,Mottage Kim,Ashejin,Ashejin,Assinging,Bannil Clance,Bannil Clance,Jenis childriot,Nizine thra Thra Thra Thra Toculty。 Ciamiian Massimian,Massimimian Ciaarism,Michael Webbing,Agnessazka Agnezka Agnezka Garbinska,Alescendro Fuish,Bornely Fish,Layony,Hena Koravonimi,Helmets,Helmets,Tom of Tom,Tomen of Tom,Tough Tom,Tougch Tom, Bichanini,Sameer Vaelkar,Vora Word,Sarebatine Krier,Jael Z Leibo,Elisan Laye H. Time和Johnson和Johnson和Johnson,以及Huber,Dash,Dash,E Stock Custom,Jacky Stotin,Jacky Stotin,San。儿子和姐妹,雷米·林(Remi Lam),维特·马丁(Virt Martin),尼纳西夫(Nenasiv),埃克蛋糕,乌奇奇·奥克克(Uchech Okeke),皮埃奇(Piechsca),酋长pieha,agarwae的稻草,阿加利亚(Agarlia)男人多纳迪亚(Donagia),艾米·多纳(Anim dos Dodse),舒克(Shuk)。
a special thanks to the Minister of the University and Research Anna Maria Bernini and the ministers who preceded her, starting from 2012, Francesco Profumo, Maria Chiara Carrozza, Stefania Giannini, Valeria Fedeli, Marco Bussetti, Lorenzo Fioramonti, Gaetano Manfredi, Maria Cristina Mass, all very attentive to the program;对于在Aldo Marchese,Gianluigi Consoli,Vincenzo de Felice,Marcella Gargano,Aldo Covello,Fulvio Esposito,Raffaele Esposito,Raffaele Liberali,Chiara Gliozzi的情况下,涉及Mur的经理和经理。在第一个穆罕默德·艾希纳维(Mohamed El-Shinawi)联合主席中,首先是基金会的秘书处,尤其是主任Octavi Quintana Tria,致为Antonella Autino计划的协调员;到意大利4Prima,Francesco Loreto,Maurizio Gamboni,Giorgio Matteucci和Lorenzo Pini del Cnr,Marcello Mastrorilli和Raffaella Zucaro Zucaro di crea,Claudia Zoyea and Massimo and Massimo andiannetta diicarecries lorcare and lorenta andianneta diicaren,到意大利4Prima指导委员会的组成部分。 Ispra,Dario de Medici和ISS的Monacelli,ISS的Matteo Loro,Francesco Loro,Francesco Capozzi,Marco Bindi,Nunzio Romano,Maurizio Notarfonso和Giuseppppappina crescimanno;致Agritech的Danilo Ercolini;促进欧洲研究的机构将开放和欧洲的欧洲代表,包括法比奥·法瓦(Fabio Fava);苏珊娜笔记;锡耶纳·弗朗切斯科·弗拉蒂(Siena Francesco Frati)和罗伯托·迪·彼得拉(Roberto di Pietra)的校长,向经理Ines Fabbro,Marco Tomasi,Marco Tomasi,Emanuele Fidora,Moira Centini捐赠了Franzi,并向Santa Chiara Lab - Santa Chiara Lab -Siena University- siena,尤其是Alsian theeSra theeSsra theserra andrra Intrra andrra Intrra andrra Intrra。
Ag 2 S-CdS /Ag /GNP ternary nanocomposite L. R. Gahramanli a,b,* , S. Bellucci a , M. B. Muradov b , M. La Pietra a , G. M. Eyvazova b , C. V. Gomez a , J. Bachmann c a NEXT laboratory, INFN, LNF, Via E. Fermi 54, Frascati, Roma, Italy b Nano Research巴库州立大学实验室,学术Zahid Khalilov街23号,阿塞拜疆C化学与药房部,弗里德里希 - 亚历山大 - 诺斯特里列森 - 埃尔凡尼·纽约人(FAU),弗里德里希·纳克斯坦(FAU),弗里德里希·纳克斯蒂安(FAU),弗里德里希·纳斯特·埃尔恩伯格(FAU),91058 ERLANGEN,NEW TYERES AG/GN ag 2 S-CDS 2 S-CDS 2 S-CD在提出的工作中合成。分别研究了化合物的结构和物理特性。Ag 2 S-CD/AG/GNP纳米复合材料。基于结果,成功合成了Ag纳米线(NWS),然后确定在杂交过程中,acanthite ag 2 s的两个阶段和Ag 2 O的立方晶体系统形成。然后,由混合单斜ag 2 s和六角形CD形成Ag 2 S-CDS NW。在Ag NW的吸收光谱中,在357.3 nm和380.2 nm处观察到主吸光度峰。Ag样品的能量差距(E G)值为3.8 eV。Ag 2 S(2.5、3.8、4.6 eV)和Ag 2 S-CD(2.5、3.8、4.8 eV)的频带隙值具有三重值,这是由于形成了混合结构。(2024年5月5日收到; 2024年7月8日接受)关键字:银NWS,GNP,物理特性,拉曼谱Ag 2 S-CD的拉曼光谱属于锌 - 蓝色期CD的纵向光学(LO)声子模式,对于GNP/PVA表面上的1、2和3次旋转涂层样品已经观察到所有特征性的拉曼峰,属于NWS,属于NWS,属于485.13 cm -1,960.2 cm-1.2 cm。
注释 13 挤压膜阻尼器:运行、模型和技术问题 挤压膜轴承阻尼器是润滑元件,可在机械系统中提供粘性阻尼。旋转机械中的挤压膜阻尼器可提供结构隔离、降低转子对不平衡的响应幅度,并且在某些情况下,有助于抑制转子动力学不稳定性。背景 转子动力学中最常见的问题是过高的稳态同步振动水平和次同步转子不稳定性。可通过改善平衡、对转子轴承系统进行修改以使系统临界转速超出工作范围或引入外部阻尼来限制在穿越临界转速时的峰值幅度,从而减轻第一个问题。可以通过消除不稳定机制、尽可能提高转子轴承系统的固有频率或引入阻尼来提高不稳定的起始转子速度,从而避免次同步转子不稳定 [Vance 1988, Childs 1993]。轻型高性能发动机表现出灵活性增加的趋势,导致对不平衡的高度敏感性,振动水平高,可靠性降低。挤压油膜阻尼器 (SFD) 是高速涡轮机械的重要组成部分,因为它们具有耗散振动能量和隔离结构部件的独特优势,以及改善固有不稳定转子轴承系统的动态稳定性特性的能力。SFD 主要用于飞机喷气发动机,为本身几乎没有或没有阻尼的滚动轴承提供粘性阻尼。另一个重要应用与高性能压缩机组有关,其中 SFD 与可倾瓦轴承串联安装,以降低(软化)轴承支撑刚度,同时提供额外的阻尼作为安全机制,以防止转子动力学不稳定。此外,在齿轮压缩机中,SFD 有助于减少和隔离通过大齿轮传输的多频激励。[San Andrés,2002]。Zeidan 等人 [1996] 介绍了 SFD 在喷气发动机中的历史,并详细介绍了 SFD 在商用涡轮机械中成功运行的设计实践。Adilleta 和 Della Pietra [2002] 全面回顾了对 SFD 进行的相关分析和实验工作。San Andrés 和 Delgado [2007] 讨论了最近的 SFD 实验研究,并展示了一种不受空气夹带的机械密封 SFD。尽管有许多成功的应用,但业界通常认识到,SFD 的设计基于过于简单的预测模型,这些模型要么未能纳入影响阻尼器动态力性能的独特特征(结构和流体),要么只是忽略了这些特征。根据操作条件,实际阻尼器性能可能从不稳定到不起作用。润滑剂空化或空气夹带等问题是根本问题 [San Andrés 和 Diaz,
注释 13 挤压膜阻尼器:运行、模型和技术问题 挤压膜轴承阻尼器是润滑元件,可在机械系统中提供粘性阻尼。旋转机械中的挤压膜阻尼器可提供结构隔离、降低转子对不平衡的响应幅度,并且在某些情况下,有助于抑制转子动力学不稳定性。背景 转子动力学中最常见的问题是过高的稳态同步振动水平和次同步转子不稳定性。可通过改善平衡、对转子轴承系统进行修改以使系统临界转速超出工作范围或引入外部阻尼来限制在穿越临界转速时的峰值幅度,从而减轻第一个问题。可以通过消除不稳定机制、尽可能提高转子轴承系统的固有频率或引入阻尼来提高不稳定的起始转子速度,从而避免次同步转子不稳定 [Vance 1988, Childs 1993]。轻型高性能发动机表现出灵活性增加的趋势,导致对不平衡的高度敏感性,振动水平高,可靠性降低。挤压油膜阻尼器 (SFD) 是高速涡轮机械的重要组成部分,因为它们具有耗散振动能量和隔离结构部件的独特优势,以及改善固有不稳定转子轴承系统的动态稳定性特性的能力。SFD 主要用于飞机喷气发动机,为本身几乎没有或没有阻尼的滚动轴承提供粘性阻尼。另一个重要应用与高性能压缩机组有关,其中 SFD 与可倾瓦轴承串联安装,以降低(软化)轴承支撑刚度,同时提供额外的阻尼作为安全机制,以防止转子动力学不稳定。此外,在齿轮压缩机中,SFD 有助于减少和隔离通过大齿轮传输的多频激励。[San Andrés,2002]。Zeidan 等人 [1996] 介绍了 SFD 在喷气发动机中的历史,并详细介绍了 SFD 在商用涡轮机械中成功运行的设计实践。Adilleta 和 Della Pietra [2002] 全面回顾了对 SFD 进行的相关分析和实验工作。San Andrés 和 Delgado [2007] 讨论了最近的 SFD 实验研究,并展示了一种不受空气夹带的机械密封 SFD。尽管有许多成功的应用,但业界通常认识到,SFD 的设计基于过于简单的预测模型,这些模型要么未能纳入影响阻尼器动态力性能的独特特征(结构和流体),要么只是忽略了这些特征。根据操作条件,实际阻尼器性能可能从不稳定到不起作用。润滑剂空化或空气夹带等问题是根本问题 [San Andrés 和 Diaz,