CV摘要,我看到自己在纳米技术与材料科学之间的界面上有好处。我拥有强大而宽阔的材料科学背景,从分子磁和磁性纳米颗粒开始,后来转向压电和铁电和机电现象,特别强调了表面科学,这为我提供了独特的创造性思维能力。我在纳米技术和纳米科学领域进行广泛的正式培训的基础覆盖了,从表面纳米结构化技术到扫描探针显微镜,包括XPS等表面科学经典技术,使我成为了材料科学研究的材料研究,专注于表面科学的实力,使我具有独特的视角。我在表面科学和纳米镜检查中赢得的声誉得到了许多合作和邀请,可以在著名的会议和讲习班上讲话。
抽象的二维(2D)分层过渡金属的tellurides(Chalcogens)可以利用其表面原子的特征,以增强用于能量转换,存储和磁性应用的地形活动。每个纸的逐渐堆叠改变了表面原子的微妙特征,例如晶格膨胀,从而导致了几种现象和渲染可调的特性。在这里,我们评估了使用表面探针技术的2D Cote 2张2D COTE 2板和磁性行为的厚度依赖性力学特性(纳米级力学,摩擦学,潜在的表面分布,界面相互作用)。通过理论研究进一步支持并解释了实验观测:密度功能理论和分子动力学。理论研究中观察到的性质变化释放了COTE 2晶体平面的关键作用。所提出的结果有助于扩大在柔性电子,压电传感器,底机传感器和下一代内存设备中使用2D telluride家族的使用。
压电材料响应施加的电场,从施加的机械应力或机械应变中产生电荷。在最近的汽车中,它们用于测量道路状况的压力传感器和检测障碍物的后声纳。Pb(Zr,Ti)O 3 (以下简称 PZT) 陶瓷是一种铁电材料,已广泛应用于压电应用。然而,在过去的几十年里,已经开发出压电性能超过 PZT 陶瓷的 Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (以下简称 PMN-PT) 和 Pb(In 1/2 Nb 1/2 )O 3 -Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (以下简称 PIN-PMN-PT) 单晶 1, 2)。由于这些单晶具有优异的压电性能(压电常数d 33 高达2 000 pC/N,机电耦合因子k 33 高达0.9),可以提高医学超声图像的质量。
使用基于两种或多光子吸收的聚合物光蛋白师使用高功率PICO-PICO或飞秒激光器,使用聚合物光孔师使用聚合物光孔师和纳米蛋白酶,从而导致相当大且昂贵的仪器。最近,我们基于两步吸收而不是两步的光子吸收,而不是两次光子的吸收,从而允许使用小型且廉价的连续波405 nm波长GAN GAN GAN半导体激光二极管激光二极管,其光输出功率低于1 MW。在此使用相同的光孔系统和相似的激光二极管,我们报告了适合鞋盒的3D激光纳米螺旋体的设计,构造和表征。这个鞋盒包含所有光学组件,即安装激光器,准直和横梁成型光学元件,微型mems xy-scanner,tube镜头,聚焦显微镜物镜,na = 1.4,100 x放大倍率),一个piezo slips-splip s-split z-spectiatiation sminiation sminitiation sminiatiation sminiatiatiatiatiatiatiatiatiatiatiatival smimiatiate smination Sypame sypamer sypamer sypamer sypame sypame sypamer nimul sminiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatiatival。采用微控制器的电子设备。我们提出了用该仪器打印的示例3D结构的画廊。我们达到了约100 nm的横向空间分辨率,重点扫描速度约为1 mm/s。可能,我们的鞋盒大小的系统可以比今天的商业系统便宜。
摘要 越来越多的证据表明,经颅低强度超声可能成为一种治疗脑部疾病的非侵入性神经调节工具。然而,其潜在机制仍然难以捉摸,而且大多数动物模型研究都采用了高强度超声,而这些超声不能安全地用于人体。在这里,我们展示了低强度超声能够激活小鼠大脑中的神经元,并且重复的超声刺激会导致特定大脑区域的成体神经发生。体外钙成像研究表明,激活培养的皮质神经元需要一种特定的超声刺激模式,该模式结合超声诱导的压力和声流机械转导。ASIC1a 和细胞骨架蛋白参与了低强度超声介导的机械转导和培养的神经元活化,而 ASIC1a 阻断剂和细胞骨架修饰剂可以抑制这种作用。相反,抑制参与双层模型机械传导的机械敏感通道(如 Piezo 或 TRP 蛋白)并不能有效抑制超声介导的神经元激活。ASIC1a 基因缺失显著降低了小鼠大脑中 ASIC1a 介导的超声效应,例如 ERK 磷酸化的即时反应和 DCX 标记的神经发生。整理的数据表明,ASIC1a 是参与调节小鼠大脑神经激活的低强度超声机械信号传导的分子决定因素。
摘要 神经科学中的各种技术都涉及将单个探针放置在大脑的精确位置。然而,使用这种方法对大脑进行大规模测量和操作受到严重限制,因为无法将探针定位系统小型化。在这里,我们提出了一种全新的远程控制微定位方法,该方法由新型相变材料填充电阻加热器微夹钳组成,这些微夹钳以尺蠖电机配置排列。夹钳的微观尺寸、稳定性、轻柔的夹持动作、单独的电子控制和高封装密度允许使用单个压电致动器对许多任意形状的探针进行微米精度的独立定位。这种多探针单致动器设计显著减小了尺寸和重量,并允许微驱动器的潜在自动化。我们展示了在急性和慢性制剂中将多个电极准确放置在体内大鼠海马中。因此,我们的机器人微驱动器技术应该能够扩大神经科学和其他领域的多种多探针应用。
啮齿动物中的一个有趣的共同特征是它们的晶须,他们可以积极地移动以感知环境周围的接触。这些晶须具有各种功能,例如从对象中提取轮廓,为机器人提供位置估算,识别纹理特征以及积极避免碰撞。基本上,它为低计算成本的机器人提供了一种非侵入性的触觉感知,尤其是在非结构化,混乱和视力障碍的环境中有益的。实现实时的被动接触估计并确保强大的机械设计对于这种传感器至关重要。以前的方法通常依赖于6轴力/扭矩传感器[1],压电电阻[2]或其他与力相关的传感器。但是,这些解决方案通常是庞大而挑战的规模。相比之下,磁透射的晶须[3]提供了更紧凑且易于集成的解决方案,能够用平行的晶须形成阵列。尽管如此,基于磁通量在根周围的磁通量变化而准确地对接触运动进行建模并沿晶须轴进行定位,这在很大程度上取决于强大的设计。我们已经构建了一种产生提示联系估计的方法,但是由于缺乏对物体形状的先验知识,基于切向接触状态估计的当前方法仍然遭受动态误差[4]。
摘要。已经开发了基于相干检测的低成本激光检测系统,即使在明亮的背景光中,也能够检测到弱,连续的激光源。该系统由Mach - Zehnder干涉仪组成,其中一个手臂用压电的镜子修饰,以调节路径长度。我们介绍了确定激光波长并扩展检测器视野的方法。为了扩大视野,将锥镜添加到系统中,而相机的额外使用则可以研究传入激光束的方向。通过使用压电镜的调制幅度估计来自三个不同激光器的波长。可以实现360度水平视场的初步结果,并且可以用估计的角精度为5度确定激光束的方向。此外,可以用10 nm的精度确定波长。系统在635 nm处将系统交易的灵敏度转换为较大的视野,而最终的检测灵敏度等于70 nW(或1μW·cm -2)。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分配或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.oe.60.2.027106]
【摘要】机械生物学专注于一系列重要的生理病理学过程,例如细胞如何感知不同的机械力学刺激,细胞内机械传导的过程以及机械信号如何确定细胞的行为和命运。从胚胎发生的初始阶段到发育生物学和再生医学,甚至通过整个生命过程,机械信号级联和机械生物学中的细胞机械反应在生物医学研究中具有重要意义。近年来,机械生物学领域的研究经历了显着的发展。世界各地的几个科学财团已经从不同的角度分析了机械生物学过程,旨在洞悉机械因素影响细胞命运确定的调节机制。在本文中,我们概述并审查了近年来在机械生物学领域中吸引更多研究兴趣的主题,例如动脉血管,干细胞和离子通道。我们还讨论了可能出现的潜在趋势,例如核变形,纤维外基质基质,肿瘤机械生物学,细胞机械转导和压电离子离子通道。此外,我们提出了有关机制研究局限性以及该领域中的大数据分析和采矿的重要性的新想法,从而提供了客观的支持和系统的框架,以掌握热门研究主题并探索机械生物学领域的新研究方向。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。