青霉素* 类别:β-内酰胺 概述 青霉素是典型的β-内酰胺,至今仍是一种重要的抗菌药物。兽医学中使用的窄谱青霉素包括天然存在的青霉素、青霉素 G (苄基青霉素) 和口服的生物合成稳定青霉素,如青霉素 V (苯氧甲基青霉素) 和苯乙青霉素。青霉素对大多数敏感细菌有杀菌作用。这些窄谱 β - 内酰胺酶敏感青霉素主要对抗革兰氏阳性菌。 耐药性 在 20 世纪 40 年代初青霉素广泛使用后不久,产生青霉素酶的金黄色葡萄球菌开始出现。青霉素酶通过酶抑制破坏β - 内酰胺环,使菌体产生耐药性。耐药性的垂直进化是指通过突变和选择获得耐药性。通过这一过程,肺炎球菌能够改变青霉素结合的靶蛋白。先前对青霉素敏感的生物体也可以通过转导获得耐药性。耐药金黄色葡萄球菌可以通过将包裹在噬菌体、细菌宿主病毒中的质粒 DNA 转移给敏感金黄色葡萄球菌,从而将 β-内酰胺酶产生能力转移给敏感金黄色葡萄球菌。生物体还可以通过转化、从死细菌中吸收暴露的 DNA 并导致基因型改变(DNA 重组)获得耐药性。这可能是肺炎链球菌传播青霉素耐药性的主要手段。结合是获得青霉素耐药性的另一种方式。结合涉及同属或不同属的细菌之间质粒或其他染色体外 DNA 的单向转移。这种转移通过生育因素介导发生,并通过性菌毛从供体延伸到受体进行。这种机制通常是多药耐药性转移的原因。这种现象发生在一系列携带抗多种抗菌药物的耐药性转移因子的紧密相关基因发生交换时。这些质粒通过转移含有形成 β -内酰胺酶所需信息的基因来携带对青霉素的耐药性。
(学分:理论3)(教学时间 - 4)课程目标:了解微生物学的基础知识并了解环境中的作用。提供对微生物世界,微生物的基本结构和功能,代谢,营养,其多样性,生理学以及与环境和人类健康的关系的基本理解。具有隔离和操纵条件的实用技能。确保学生了解微生物的结构和功能。单元 - I(10小时)微生物多样性:微生物学,历史和微生物学范围,一般特征和分类的古细菌,细菌,真菌,藻类,原生动物,病毒,病毒和王室的基础。原核生物和真核生物之间的差异。单位II(15小时)细菌的超微结构:细胞结构 - 细菌及其生物合成的细胞壁,细胞包膜 - 胶囊和粘液层,细胞附加物 - pili,鞭毛,鞭毛和脂肪,细胞膜,细胞膜,包含体,质粒DNA和质子DNA和染色体和染色体DNA。细菌遗传学 - 结合,转导(广义和专业化)和转化。单位-V(10小时)微生物控制:灭菌,消毒,反杂质,熏蒸。物理控制:温度(潮湿的热量,高压灭菌,干热,热空气烤箱和焚化炉),干燥,渗透压,辐射,紫外线,电力,超声波,超声波波,过滤。化学控制:防腐剂和消毒剂(卤素,酒精,气态灭菌)课程学习结果(CLO):学生将能够1。2。单元-III(15小时)显微镜:染色 - 染色(简单和微分)显微镜的原理和类型 - 光学显微镜(明亮场,暗场,相位对比,荧光显微镜)和电子显微镜的原理,原理和申请营养类型,培养基类型的制备,微生物的培养,微生物生长曲线,病毒复制:裂解和裂解性周期,微生物的隔离,保存和维持微生物,有氧和厌氧的细菌培养,生物效应以及生物因素的作用以及生物因素对生长的生长。定义了微生物学的科学,其发展和在人类福利中的重要性。描述自发产生的历史概念以及执行
(学分:理论3)(教学时间 - 4)课程目标:了解微生物学的基础知识并了解环境中的作用。提供对微生物世界,微生物的基本结构和功能,代谢,营养,其多样性,生理学以及与环境和人类健康的关系的基本理解。具有隔离和操纵条件的实用技能。确保学生了解微生物的结构和功能。单元 - I(10小时)微生物多样性:微生物学,历史和微生物学范围,一般特征和分类的古细菌,细菌,真菌,藻类,原生动物,病毒,病毒和王室的基础。原核生物和真核生物之间的差异。单位II(15小时)细菌的超微结构:细胞结构 - 细菌及其生物合成的细胞壁,细胞包膜 - 胶囊和粘液层,细胞附加物 - pili,鞭毛,鞭毛和脂肪,细胞膜,细胞膜,包含体,质粒DNA和质子DNA和染色体和染色体DNA。细菌遗传学 - 结合,转导(广义和专业化)和转化。单位-V(10小时)微生物控制:灭菌,消毒,反杂质,熏蒸。物理控制:温度(潮湿的热量,高压灭菌,干热,热空气烤箱和焚化炉),干燥,渗透压,辐射,紫外线,电力,超声波,超声波波,过滤。化学控制:防腐剂和消毒剂(卤素,酒精,气态灭菌)课程学习结果(CLO):学生将能够1。2。单元-III(15小时)显微镜:染色 - 染色(简单和微分)显微镜的原理和类型 - 光学显微镜(明亮场,暗场,相位对比,荧光显微镜)和电子显微镜的原理,原理和申请营养类型,培养基类型的制备,微生物的培养,微生物生长曲线,病毒复制:裂解和裂解性周期,微生物的隔离,保存和维持微生物,有氧和厌氧的细菌培养,生物效应以及生物因素的作用以及生物因素对生长的生长。定义了微生物学的科学,其发展和在人类福利中的重要性。描述自发产生的历史概念以及执行
(学分:理论3)(教学时间 - 4)课程目标:了解微生物学的基础知识并了解环境中的作用。提供对微生物世界,微生物的基本结构和功能,代谢,营养,其多样性,生理学以及与环境和人类健康的关系的基本理解。具有隔离和操纵条件的实用技能。确保学生了解微生物的结构和功能。单元 - I(10小时)微生物多样性:微生物学,历史和微生物学范围,一般特征和分类的古细菌,细菌,真菌,藻类,原生动物,病毒,病毒和王室的基础。原核生物和真核生物之间的差异。单位II(15小时)细菌的超微结构:细胞结构 - 细菌及其生物合成的细胞壁,细胞包膜 - 胶囊和粘液层,细胞附加物 - pili,鞭毛,鞭毛和脂肪,细胞膜,细胞膜,包含体,质粒DNA和质子DNA和染色体和染色体DNA。细菌遗传学 - 结合,转导(广义和专业化)和转化。单位-V(10小时)微生物控制:灭菌,消毒,反杂质,熏蒸。物理控制:温度(潮湿的热量,高压灭菌,干热,热空气烤箱和焚化炉),干燥,渗透压,辐射,紫外线,电力,超声波,超声波波,过滤。化学控制:防腐剂和消毒剂(卤素,酒精,气态灭菌)课程学习结果(CLO):学生将能够1。2。单元-III(15小时)显微镜:染色 - 染色(简单和微分)显微镜的原理和类型 - 光学显微镜(明亮场,暗场,相位对比,荧光显微镜)和电子显微镜的原理,原理和申请营养类型,培养基类型的制备,微生物的培养,微生物生长曲线,病毒复制:裂解和裂解性周期,微生物的隔离,保存和维持微生物,有氧和厌氧的细菌培养,生物效应以及生物因素的作用以及生物因素对生长的生长。定义了微生物学的科学,其发展和在人类福利中的重要性。描述自发产生的历史概念以及执行
XI 2201 R.E.N Corporation Brgy。 达沃市Dumoy(Talomomo)。 达沃市Dumoy(Tomomo)。 达沃市达沃市Dumoy(Talomo)。布吉。 Tipaz,圣胡安,八打雁施肥,2024年8月15日Brgy。 反病毒。 Mayoa May 梅莫夫>五月五月。 达沃市达沃市。布吉。 达沃市达沃市。 Tolentino Agri Marketing Brgy。 首先,肥料制造商2025年3月5日v A.G. Tolentino Agri Marketing Brgy。 首先,肥料05,2025 xi 强大(令人惊讶的是,达沃市。 达沃·德尔·苏尔(Davao del Sur)的潘波市。布吉。XI 2201 R.E.N Corporation Brgy。达沃市Dumoy(Talomomo)。达沃市Dumoy(Tomomo)。达沃市达沃市Dumoy(Talomo)。布吉。Tipaz,圣胡安,八打雁施肥,2024年8月15日Brgy。反病毒。Mayoa May梅莫夫>五月五月。达沃市达沃市。布吉。达沃市达沃市。 Tolentino Agri Marketing Brgy。首先,肥料制造商2025年3月5日v A.G. Tolentino Agri Marketing Brgy。首先,肥料05,2025 xi强大(令人惊讶的是,达沃市。达沃·德尔·苏尔(Davao del Sur)的潘波市。布吉。2025年3月7日XI Brgy。南施肥。圣马来亚托克,桑托·星期日,圣穆特,圣肥,2024年12月17日iii。San Malayantoc,Santo Sunday,Holy Discemer 17,Inc。,Inc。,Brgy。。布吉。奎松市奎松市。卡布兰市卡巴瓦市,卡布兰市,ISPortr Pager第16页,2024年II卡布兰市卡巴瓦市,iSlaberizer。坎兰巴市坎兰兰。圣洛伦佐(Makro Manila)。圣洛伦佐,马卡蒂市。Magri Bunch产品OPC Brgy。 梅登(LosBaños)。Magri Bunch产品OPC Brgy。梅登(LosBaños)。Magri产品OPC Brgy。Magri Bunch产品OPC Brgy。Magtatabaking,San Carlos City,Brgy。Molino III,Bacoor City,12月12日,Brgy。Bacoor City,Inc。Molono III。唐·何塞(Don Jose),圣何塞(San Jose),圣何塞(San Jose)。布吉。唐·何塞(Don Jose),圣罗莎(Sant Rosa)城,2025年1月31日。布吉。Surlato肥料肥料。梅登(LosBaños)。Maydon,LosBaños,7月9日,Brgy。Tetuan,Zamboanga City,安东尼诺,艾丽西亚,岛。Antonino,Alicia,Island,Alicia。Antonino,Alicia,Island,Alicia。Antonino,Alicia,Isabela肥料制造商2024年9月11日III Agrigrigth International Corporation Brgy。圣约瑟夫·诺斯(St. Joseph North),安娜(Anao)
5 Albers,S. -V。 &Jarrell,K。F.古细菌:古细菌如何游泳。 微生物学中的边界6,doi:10.3389/fmicb.2015.00023(2015)。 6 Albers,S. -V。 &Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。 微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。 7 Van Wolferen,M.,Orell,A。 &Albers,S. -V。 古细菌生物膜形成。 自然评论微生物学16,699-713(2018)。 8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。 微生物学的前沿6,190(2015)。 9 Walker,D。等。 hungatei的甲螺旋藻的古细胞是导电性的。 。 MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。5 Albers,S. -V。&Jarrell,K。F.古细菌:古细菌如何游泳。微生物学中的边界6,doi:10.3389/fmicb.2015.00023(2015)。6 Albers,S. -V。 &Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。 微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。 7 Van Wolferen,M.,Orell,A。 &Albers,S. -V。 古细菌生物膜形成。 自然评论微生物学16,699-713(2018)。 8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。 微生物学的前沿6,190(2015)。 9 Walker,D。等。 hungatei的甲螺旋藻的古细胞是导电性的。 。 MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。6 Albers,S. -V。&Jarrell,K。F. Archaellum:独特的古细菌运动结构的更新。微生物学的趋势26,351-362,doi:https://doi.org/10.1016/j.tim.2018.01.004(2018)。7 Van Wolferen,M.,Orell,A。&Albers,S. -V。古细菌生物膜形成。自然评论微生物学16,699-713(2018)。8 Pohlschroder,M。&Esquivel,R。N.古细菌IV pili及其参与生物膜形成。微生物学的前沿6,190(2015)。9 Walker,D。等。hungatei的甲螺旋藻的古细胞是导电性的。。MBIO 10,E00579-00519(2019)。 10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。 MBIO 12,E02344-02321(2021)。 11 Quemin,E。R.等。 首先深入了解过度授予性古细菌病毒的进入过程。 J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。 12 Baquero,D。P.等。 病毒研究的进展。 108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。 13 Briegel,A。等。 跨古细菌和细菌的趋化机制的结构保护。 环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。MBIO 10,E00579-00519(2019)。10 Holmes,D。E.,Zhou,J.,Ueki,T.,Woodard,T。&Lovley,D。R.在直接种间电子传输过程中,甲那粒乙酸盐乙酸盐摄取电子的机制。MBIO 12,E02344-02321(2021)。11 Quemin,E。R.等。首先深入了解过度授予性古细菌病毒的进入过程。J Virol 87,13379-13385,doi:10.1128/jvi.02742-13(2013)。12 Baquero,D。P.等。病毒研究的进展。108(eds Margaret Kielian,Thomas C. Mettenleiter和Marilyn J. Roossinck)127-164(学术出版社,2020年)。13 Briegel,A。等。跨古细菌和细菌的趋化机制的结构保护。环境微生物学报告7,414-419,doi:https://doi.org/10.1111/1758-222299.12265(2015)。14 Quax,T。E. F.,Albers,S. -V。 &Pfeiffer,古细菌的出租车。 生命科学的新兴主题2,535-546,doi:10.1042/etls20180089(2018)。 15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。 &Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。 分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。 16 Meyerdierks,A。等。 元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。 环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。 17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。14 Quax,T。E. F.,Albers,S. -V。&Pfeiffer,古细菌的出租车。生命科学的新兴主题2,535-546,doi:10.1042/etls20180089(2018)。15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。 &Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。 分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。 16 Meyerdierks,A。等。 元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。 环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。 17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。15 Li,Z.,Rodriguez -Franco,M.,Albers,S. -V。&Quax,T。E. F.开关复合物Arlcde连接趋化系统和古细胞。分子微生物学114,468-479,doi:https://doi.org/10.1111/mmi.14527(2020)。16 Meyerdierks,A。等。元基因组和mRNA表达分析ANME -1组的厌氧性古细菌。环境微生物学12,422-439,doi:doi:10.1111/j.1462-2920.2009.02083.x(2010)。17 Chadwick,G。L.等。 比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。 PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。 18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。17 Chadwick,G。L.等。比较基因组学揭示了电子转移和综合机制,从而区分了甲状腺营养和甲烷古细菌。PLOS生物学20,E3001508,doi:10.1371/journal.pbio.3001508(2022)。18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。 &Mansoorabadi,S。O。 甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。 Science 354,339-342,doi:10.1126/science.aag2947(2016)。 19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。18 Zheng,K.,Ngo,P。D.,Owens,V。L.,Yang,X. -P。&Mansoorabadi,S。O。甲酶F430在甲烷和甲状腺营养古细菌中的生物合成途径。Science 354,339-342,doi:10.1126/science.aag2947(2016)。19 Michael,A。J.多胺在古细菌和细菌中的功能。 生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。 20 Morimoto,N。等。 在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。 细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。 21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。19 Michael,A。J.多胺在古细菌和细菌中的功能。生物学杂志293,18693-18701,doi:https://doi.org/10.1074/jbc.tm118.005670(2018)。20 Morimoto,N。等。在高疗法中的长链多胺的双重生物合成途径 thermoccus kodakarensis 。细菌学杂志192,4991-5001,doi:doi:10.1128/jb.00279-10(2010)。21 Kanehisa,M。&Goto,S。Kegg:基因和基因组的京都百科全书。核酸研究28,27-30,doi:10.1093/nar/28.1.27(2000)。22 Mihara,H。&Esaki,N。细菌半胱氨酸脱硫酶:它们的功能和机制。应用微生物学和生物技术60,12-23,doi:10.1007/s00253-002-1107-4(2002)。23 Tchong,S.-I.,Xu,H。&White,R。H. L-半胱氨酸脱硫酶:一种从Jannaschii中分离出的[4FE -4S]酶,催化了L-半结合体为吡酸丙酮酸,氨氨基和硫化物的溶解。生物化学44,1659-1670,doi:10.1021/bi0484769(2005)。