Piranha 溶液非常活跃,会放热,并且具有爆炸性。它很可能会变热,超过 100°C。小心处理!在制备 Piranha 溶液时,务必将过氧化物添加到酸中。H 2 O 2 应在工艺前立即添加,因为它会立即产生放热反应并释放气体(压力)。如果 H 2 O 2 浓度达到或超过 50%,则可能会发生爆炸。Piranha 溶液会与任何有机材料发生剧烈反应。避免与不相容的材料混合,例如酸、碱、有机溶剂(丙酮、异丙醇)或尼龙。在将所有基质放入 Piranha 溶液之前,务必确保已冲洗并干燥所有基质。仅使用干净的玻璃或 Pyrex 容器;Piranha 溶液与塑料不相容。
苏尔寿的优质潜水磨削泵系列(型号为 ABS Piranha PE)配备了符合 IEC 60034-20 标准的高效 IE3 电机。苏尔寿是世界上第一家提供高效 IE3 潜水电机的公司,实现了可靠性和能耗的完美平衡。Piranha 磨削泵采用高效 IE3 电机和最有效的切割系统,是市场上最好的泵之一,可实现零堵塞和低生命周期成本,提供可靠性和节能效果。
火灾................................................................................................................................................................ 11
丙烯酸义齿上衬里成分的分离很常见。因此,改善衬里和丙烯酸义齿之间的粘附至关重要。Piranha溶液用于治疗丙烯酸以增强键合强度。这项研究评估了Piranha溶液(过氧化氢H 2 O 2和硫酸H 2 SO 4的组合)对增强丙烯酸树脂和基于有机硅齿的软衬里的粘附强度的影响。八十种聚甲基丙烯酸酯(PMMA)样品的表面粗糙度(n = 20),剪切键强度(n = 20对),润湿性(n = 20)和硬度测试(n = 20)。样品被随机分为W组(无处理)和P组(使用Piranha溶液处理)。随后是有机硅软内衬。介绍仪,通用测试设备,光接触角和岸D持续时间设备分别用于分析表面粗糙度,剪切键强度,润湿性和硬度样本,然后研究故障机制。t检验用于分析数据。在P组(表面粗糙度,剪切键强度和润湿性)值(P≤0.05)中观察到显着变化。比对照组(W组)(W组)(P组)的Piranha溶液治疗组(P组)显示出更高的表面粗糙度,剪切键强度和润湿性,并且两组之间硬度值的变化不显着。这项研究的发现表明,使用Piranha溶液可以是增强PMMA表面特性的非常成功的方法,从而增强了有机硅软衬里的键合能力。
样品制作工艺从对 < 100 > 表面取向的电子级金刚石衬底 (元素 6) 进行植入前表面处理开始。首先将样品衬底放入湿式 Piranha(H 2 SO 4 (95 %): H 2 O 2 (31 %) 比例为 3:1)无机溶液中,在 80 ◦ C 下清洗 20 分钟,然后通过电感耦合等离子体反应离子蚀刻 (ICP/RIE) Ar/Cl 2 等离子体化学配方进行表面约 5 µ m 蚀刻,以去除衬底表面残留的抛光诱导应变。再进行约 5 µ m ICP/RIE O 2 化学等离子蚀刻,以去除前面蚀刻步骤中残留的氯污染[1]。接下来,将样品在 Piranha 溶液中进行无机清洗(80 ◦ C 下 20 分钟),并注入 Sn 离子(剂量为 1e11 离子/cm 2,能量为 350 keV)。在通过真空退火(1200 ◦ C)激活 SnV 中心之前,进行三酸清洗(比例为 1:1:1,HClO 4(70%):HNO 3(70%):H 2 SO 4(> 99%))1.5 小时,以去除任何残留的有机污染,然后在退火步骤后进行相同的湿式无机清洗程序,以去除在金刚石基材退火步骤中形成的任何表面石墨薄膜层。为了评估 SnV 中心是否成功激活,在悬浮结构纳米制造之前对样品进行表征。波导结构的纳米加工遵循参考文献[2-6]和[1]中开发的基于晶体相关的准各向同性蚀刻底切法的工艺。图S1中显示了该方法的示意图。
晶圆处理 湿法清洗 溶剂清洗 Piranha 溶液 RCA 清洗 光刻 离子注入 干法蚀刻 湿法蚀刻 等离子灰化 热处理 快速热退火 炉退火 热氧化 化学气相沉积 (CVD) 物理气相沉积 (PVD) 分子束外延 (MBE) 电化学沉积 (ECD) 化学机械平坦化 (CMP) 晶圆测试 晶圆背面研磨 芯片制备 晶圆安装 芯片切割 IC 封装 芯片附着 IC 键合 引线键合 热超声键合 倒装芯片 晶圆键合 胶带自动键合 (TAB) IC 封装 烘烤 电镀 激光打标 修整和成型 IC 测试
消防柜台 (OTC) 计划审查服务仅可通过预约获得。如果您的项目符合以下 OTC 资格标准,请发送电子邮件至我们的助理消防局长 David Rodriguez,邮箱地址为 drodriguez4@anaheim.net,预约时间。不符合以下所列标准的计划将使用我们现有的流程和费用表提交进行正常审查。OTC 审查所需材料:阿纳海姆市的现行营业执照、已填妥的消防计划审查申请、付款以及 3 份计划和剪切表。我们接受以阿纳海姆市、Visa、万事达卡或 Discover 为收款人的支票。不接受现金。OTC 费用被视为加急费用,相当于申请表上常规计划检查费用的两倍。OTC 审查资格标准:商用消防喷淋器:租户对现有消防喷淋系统进行改进,该系统涉及 20 个或更少的喷头,无需进行水力计算。住宅消防喷头:租户对现有的 13D 消防喷头系统进行改进,该系统包含 20 个或更少的喷头,无需进行水力计算。厨房烟罩灭火系统:预制灭火系统,最多配备两个烟罩、一个水箱、一个拉站,可保护多达 8 个烹饪用具。机械/电气功能必须经建筑部门批准。Piranha 系统、CORE 系统、无通风系统和未列出的设备不符合 OTC 审查资格。消防喷头水流监控:范围必须限于火灾报警控制面板、一个烟雾探测器、一个手动拉动装置、一个喇叭、一到三个水流装置、一到三个监控装置和一个远程报警器,仅用于水流监控。消防线地下系统的紧急维修:维修因管道断裂而停止使用的现有地下消防线系统。
本文介绍了法国Villeurbanne的Laboratoire deLaMatière,法国Villeurbanne摘要:对Ni-Al合金的调查,在本文中介绍了在P型4H-SIC上形成欧姆的接触。检查了Ni/Al接触的几个比例。在1分钟内在400°C的氩气气氛中进行快速热退火,然后在2分钟内在1000°C下退火。为了提取特定的接触电阻,制造了传输线方法(TLM)测试结构。在p型层上可重复获得3×10-5Ω.cm2的特定接触电阻,而N a = 1×10 19 cm -3的掺杂,由Al 2+离子植入进行。测得的最低特异性接触电阻值为8×10-6Ω.cm2。引言硅碳化物是一种半导体,它在硅中具有多种优越的特性,例如宽带镜头三倍,高电场强度(六倍),具有铜和高电子饱和度漂移速度的高热电导率。由于SIC单晶生长晶粒已被商业化,因此在SIC应用中进行了深入的研究[1],用于高温,高频和高功率设备。半导体设备参数控制开关速度和功率耗散的强大取决于接触电阻[2]。为制造高性能的SIC设备,开发低阻力欧姆接触是关键问题之一。目前正在限制SIC设备的性能,特别是因为与P型材料接触[3-7]。这些接触通常采用铝基合金[3,7]。已经研究了许多不同的解决方案,并且非常关注Ti/al [3-5],该溶液在p -SIC上产生了10 -4-10-5Ω.cm2的特定接触电阻。最近通过使用诸如TIC [6]的替代材料(诸如TIC [6]的替代材料产生改进的接触的尝试,导致了低于1×10-5Ω.cm2的特定接触电阻,但是这些接触需要“外来”材料和非标准制造技术。另一方面,一些调查集中在接触Ni/Al [7,8]上,优势是形成欧姆行为无论构成不管构成。在本文中,通过不同的参数提出并讨论了p-SIC上Ni/Al欧姆接触的形成。用不同的参数实现了一组样品。善良的注意力首先集中在表面制备上,尤其是有或没有氧化的情况。然后,研究并讨论了触点中的特定电阻与AL含量。最后,也分析了退火序列的效果。使用标准的梯形热处理特征用于1000°C的退火,然后通过在400°C的中间步骤添加1分钟进行修改。实验样品是4H-SIC N型底物,其n型表层掺杂以10 15 cm -3的掺杂,从Cree Research购买。通过浓度为n a = 1×10 19 cm -3的Al 2+离子植入获得P型区域。在Argon Ambient下,在45分钟内在1650°C下进行射入后退火[9]。首先在溶剂中清洁样品,然后再清洗“ Piranha”溶液。冲洗后,将RCA清洁应用于样品,然后将它们浸入缓冲氧化物蚀刻(BOE)中。清洁后,立即在1150°C的干氧中生长了SIO 2层2小时。光刻来定义传输线方法(TLM)模式,并在将样品引入蒸发室之前就打开了氧化物。Ni的接触组成,然后通过电阻加热沉积AL。最终通过升降过程获得了TLM触点。仅在几分钟内在1000°C下在1000°C下在Argon大气下进行退火后才能建立欧姆接触的形成。