X射线检测器可以在非结构测试,辐射暴露监测,安全检查,包装分类,医学诊断和计算机断层扫描(CT)中找到各种应用。在工作原理方面,可以间接或直接检测到X射线辐射。间接地,闪烁体用于将高能量X射线光子转换为可见的荧光,然后通过Pho-Todiode将其转换为电信号。由于能量构造和闪烁体散射的局限性,因此产生高分辨率图像的过程具有挑战性。在X射线检测的直接方法中,半导体材料通常用于将高能X射线直接转换为电信号,从而提供更高的能量转换效率和更好的成像分辨率。最近,已经出现了直接的X射线检测,因此已经出现了高原子数(高Z)材料,例如金属卤化物钙钛矿(MHP),无铅钙钛矿和无机/有机材料。尽管这些材料可以有效地吸收高能量X射线光子,但这些具有低浓度缺陷的高质量单晶材料仍然具有挑战性。因此,由于激发载体的强烈重新支持,基于这些材料的X射线检测器具有相对较低的灵敏度。我们正在研究新材料和结构来解决这个问题。ti 3 C 2 t x mxenes由于其出色的电导率,机械性柔韧性和可调带镜头而特别有吸引力,此外还具有super层水性分散性。One promising option is MXenes, a type of 2D materials that consists of transition metal car- bides or nitrides with the general formula M n + 1 X n T x (where n ranges from 1 to 4, M is an early transition metal like Ti, Sc, or Cr, X can be carbon or nitrogen, and T x represents surface terminal groups such as F, O, OH, and Cl).1与单晶钙钛矿材料相比,Ti 3 C 2 t x mxenes纳米膜更容易通过真空过滤和转移而无需引入杂质而实用。与其他具有高电阻的材料不同,Ti 3 C 2 t X Mxenes的高电导率可以降低设备的总体电阻,从而使设备能够在相对较低的电压下实现X射线检测。与基于硅的底物的出色兼容性
摘要:针对线弧增材制造 (WAAM),我们提出并实施了一种创新轨迹策略,该策略适用于不同的、更复杂的几何形状,而非单一解决方案。这种名为 Pixel 的策略可定义为一个复杂的多任务程序,用于执行优化的路径规划,其操作通过计算算法(启发式算法)进行,具有可访问的计算资源和可容忍的计算时间。模型层被分成方形网格,一组点系统地生成并分布在切片轮廓内,类似于屏幕上的像素,轨迹在此规划。Pixel 策略基于从旅行商问题 (TSP) 技术创建轨迹。与现有算法不同,Pixel 策略使用经过调整的贪婪随机自适应搜索程序 (GRASP) 元启发式算法,并由作者开发的四个并发轨迹规划启发式算法辅助。交互从随机初始解决方案(全局搜索)和后续迭代改进(局部搜索)提供连续轨迹。在所有循环之后,定义一条轨迹并用机器代码编写。实施计算评估以证明每种启发式方法对最终轨迹的影响。最终使用两种不同的不易打印的形状进行了实验评估,以证明所提策略的实际可行性。
摘要——相机传感器依靠全局或滚动快门功能来曝光图像。这种固定功能方法严重限制了传感器捕捉高动态范围 (HDR) 场景和解决高速动态的能力。空间变化像素曝光已被引入作为一种强大的计算摄影方法,用于光学编码传感器上的辐照度并通过计算恢复场景的附加信息,但现有方法依赖于启发式编码方案和庞大的空间光调制器来光学实现这些曝光功能。在这里,我们引入神经传感器作为一种方法,以端到端的方式与可微分图像处理方法(例如神经网络)联合优化每像素快门功能。此外,我们展示了如何利用新兴的可编程和可重新配置的传感器处理器直接在传感器上实现优化的曝光功能。我们的系统考虑了传感器的特定限制来优化物理上可行的光学代码,我们在模拟和真实场景实验中评估了其快照 HDR 和高速压缩成像的性能。
到达时间(秒) XY TPX3 0.00405912969 56 239 TPX3 0.00405912969 0 214 TPX3 0.00405912969 121 163 TPX3 0.00405912656 68 145 TDC 0.00405912655 - - TPX3 0.00405920938 133 197 TPX3 0.00405912500 32 98 TXP3 0.00405956094 12 228 TDC 0.00405956096 - -
摘要。高能粒子探测器 (HEPD) 模块用于测量地球磁层中捕获的电子和质子通量的倾斜角和能量,能量分别为 3-100 MeV 和 30-300 MeV。由于 CSES-02 卫星的发射,改进 HEPD 的一个有趣选择是为跟踪模块配备 ALPIDE 单片有源像素,该像素是专门为 CERN 的 ALICE 实验的 ITS 升级而开发的。在这项工作中,我们提出了一个模块化紧凑型粒子跟踪器项目,该跟踪器由 5 个转塔组成,利用配备混合集成电路 (HIC) 的 150 像素传感器,并由安装在铝制外壳中的碳纤维增强塑料 (CFRP) 板条支撑。所有设想的解决方案都经过了严格的资格测试,涉及振动和热应力。 HEPD-02 跟踪器项目预示着 CFRP 将大规模应用于科学和探索性质的太空计划。
脑肿瘤是一种癌症,其中大脑中的组织在大脑中迅速而不均匀地生长,并对人类生命造成巨大威胁。脑肿瘤被认为是成年人中常见可怕的癌症之一,它也会影响儿童。这种癌症分为两种类型,例如良性肿瘤和恶性肿瘤。然而,良性肿瘤是可以治愈的,而恢复受恶性肿瘤影响的患者的生存机会较小。如今,通常使用MR图像来检测脑肿瘤的种类。早期分类和肿瘤的鉴定对于治疗肿瘤并从早期死亡中挽救了人类生命很重要。然而,使用术前和术后MR图像的脑肿瘤分类和变化检测百分比是一项非常具有挑战性的任务。为了克服此类问题,这项研究提出了一种新的有效技术,用于使用拟议的深信念网络(DBN) +深卷积神经网络(DCNN)来确定像素变化检测。该过程涉及四个阶段,例如预处理,分割,特征提取和分类。DBN + CNN的组合用于基于错误函数的决策。DBN + CNN通过开发的横梁算法进行了训练。此外,提出的方法的最大准确度为0.957,灵敏度为0.967,特异性为0.918。
摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 μ m 的六边形像素矩阵,由低噪声和非常快速的 SiGe HBT 前端电子设备读出。使用厚度为 50 μ m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用同一原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。
Belle II实验的检测器和在未来电子峰值事件中的顶级夸克质量质量在其指导下在Colduscular Physics(混合中心瓦伦西亚大学和CSIC)的指导下进行。
使用多功能的精细pitchμ-thecky Makoto Motoyoshi 1,Junichi takanohashi 1,Takafumi Fukushima 2,Yasuo Arai 3和Mitsumasa koyanagi 2 1 1 1 1 1 1 tohoku-Microtec Co.,ltd。(T-Micro)(T-Micro)#203333, Aramaki, Aoba-ku, Sendai 980-8579, Japan E-mail: motoyoshi@t-microtec.com 2 Tohoku University, New Industry Creation Hatchery Center 6-6 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan 3 KEK, High Energy Accelerator Research Organization Institute of Particle and Nuclear Studies 1-1 Oho, Tsukuba,Ibaraki 305-0801,日本摘要 - 本文介绍了2.5μmx2.5μm的3D堆叠技术(indium)凸起连接,并带有粘合剂注射[1]。不是使用简单的测试设备,而是使用实际电路级测试芯片验证了该技术。发现,堆叠过程的完成会受到堆叠的每个层的布局模式的影响。为了最大程度地减少这些效果,我们优化了布局,过程参数和设备结构。
Method 30 fps 1920p 80 fps 640p 100 fps 320p Focal length 3.04 mm 3.04 mm 3.04 mm Lens diameter 1.52 mm 1.52 mm 1.52 mm f/# 2.0 2.0 2.0 Camera pixel size 1.12 x 1.12 µm 2.24 x 2.24 µm 4.48 x 4.48 µm Distance per pixel 1.12 µm 2.24 µm 4.47 µm放大1.000x 1.000x 1.002x