本文介绍了一种具有新颖像素结构的自供电异步传感器。像素是自主的,可以独立收集或感应能量。在图像采集过程中,一旦像素感应到其局部照明水平,它们就会切换到收集操作模式。使用所提出的像素架构,大多数发光像素都会为传感器提供早期供电,而低照度像素则会花费更多时间感应其局部照明。因此,等效帧速率高于传统自供电传感器提供的帧速率,后者在独立阶段收集和感应照明。所提出的传感器使用首次尖峰时间读数,允许在图像质量和数据与带宽消耗之间进行权衡。该设备具有动态范围为 80 dB 的 HDR 操作。像素功耗仅为 70 pW。本文详细介绍了传感器和像素的架构。提供并讨论了实验结果。传感器规格与现有技术进行了对比。
• CMOS:20 μm/像素,1024 x 1024,图像尺寸随帧速率增加而减小 • 混合 CMOS(带像素存储):30 μm/像素,400 x 250,图像尺寸保持不变 q 物镜:2x、5x、10x、20x
这项研究的主要目的是利用超声图像分割来提高从其平均像素强度(图像亮度)来确定RAM睾丸实质的化学成分的一致性和准确性。在纵向和横向平面中,用8 MHz线性阵列传感器扫描了从性成熟的Karakul公羊获得的十种睾丸,并将所有超声图作为数字图像保存。使用Kjeldahl方法来确定粗蛋白的量,使用一种烤箱干燥的方法来确定水分含量,并使用干燥样品的肥皂水提取来确定睾丸组织样品的脂肪含量。使用ImageProplus®分析软件(位图)对睾丸实质的数字图像进行标准化,并进行计算机化分析。然后,比较了两种不同的方法,即回声强度(EI)带和算法隔离的像素强度值(位图),以检测睾丸组织的数值像素值和邻近的化学化学成分之间的定量相关性。使用25个或50像素强度带对在纵向(长)和横向(跨)平面中获得的睾丸超声图进行睾丸超声图,我们确定了两个长EI频段(26-50和0-50),其中平均数值像素值(NPV)与脂肪含量和四个型号的npv显着相关,并显着相关。 (51-75、76-100和51-100具有蛋白质含量,以及0-50、51-75和51-100的水分)。For Long images, the accuracy of predicting the fat, moisture and protein content of the testicular parenchyma using r-Algo−identified pixel intensity clusters was 87.43±2.50% (pixels 99-114), 99.54±0.11% (84-89), and 90.66±1.18% (49-55), respectively.对于反式图像,各自的精度值为86.37±1.49%(52-58),99.34±0.13%(54-77)和91.19±2.02%(50-67)。特定像素强度范围的算法检测似乎是一种最佳的像素隔离方法,用于确定一阶声Xteral特性(即NPV,像素异质性和频率分布)和测试的化学成分之间的精确相关性。 我们目前的结果强调了将这种计算机辅助图像分析方法纳入睾丸生物化学/组织生理学变化的超声检查方法的重要性。算法检测似乎是一种最佳的像素隔离方法,用于确定一阶声Xteral特性(即NPV,像素异质性和频率分布)和测试的化学成分之间的精确相关性。我们目前的结果强调了将这种计算机辅助图像分析方法纳入睾丸生物化学/组织生理学变化的超声检查方法的重要性。
摘要:硅像素传感器上的防护环结构有益于提高传感器的高压承受性能。为了评估防护圈结构对硅像素传感器的保护效果,模拟和分析了三种防护环结构。通过技术计算机辅助设计进行了三个防护环结构的两个维度建模,并使用软件内置的电气模型模拟了三个防护圈结构的I -V特性。当前收集环的存在可以使像素可以承受高压,并且不等的防护戒指,不同的空间后卫环,内部和外部等距的Al悬架,并且多个防护戒指结构有益于进一步增加传感器的击穿电压。关键词:PIN二极管silicon Pixel Sensor;防护戒指;耐用高压;技术计算机辅助DEGSIN OCIS代码:280.4750 ;230。0040 ;230.5160
1) Applicant should have scanned copy of his/her i) Photograph ii) Signature and ii) ID proof ensuring that all are within the required specifications as under: • Images format should be in JPG 8bit and size should be minimum 8KB and maximum 20KB • Image Dimension of Photograph should be 100 (Width) X 120 (Height) Pixel only • Image Dimension of Signature should be 140 (Width) X 60 (Height) Pixel only • Image ID证明的尺寸应为400(宽度)x 420(高度)像素。ID证明应包含名称,照片,出生日期和签名。大小应为8KB和最大25kb。•ID证明可以是以下任何一项:Aadhaar卡,驾驶执照,选民卡,由雇主发行的ID卡(带有照片和签名),PAN卡,PAST卡,Pastport 2),以进行在线付款,申请人应保留有关其信用/借记卡/ Net Banking的必要详细信息。录取的考试信将仅通过电子邮件发送到个人电子邮件ID。它也将在我们的网站上可供下载。不会通过邮政/快递等发送录取通知书的硬拷贝等。 div>农村自雇培训机构(RSETIS)/金融素养信用咨询中心(FLCCS)将努力熟悉候选人在线注册过程。学习材料/课程 div>
TFP401A-Q1 是一款兼容数字视频接口 (DVI) 的 TMDS 数字接收器,用于数字平板显示系统接收和解码 TMDS 编码的 RGB 像素数据流。在数字显示系统中,主机(通常是 PC 或工作站)包含兼容 TMDS 的发射器,用于接收 24 位像素数据以及适当的控制信号。主机将数据和控制信号编码为高速低压差分串行比特流(适合通过双绞线电缆传输)到显示设备。显示设备(通常是平板显示器)需要兼容 TMDS 的接收器(如 TI TFP401A-Q1)将串行比特流解码回主机发出的相同 24 位像素数据和控制信号。然后,解码后的数据可直接应用于平板驱动电路,以在显示器上产生图像。主机和显示器之间的距离可达到 5 米或更长,因此最好采用像素数据的串行传输。要支持高达 UXGA 的现代显示分辨率,需要具有良好抖动和偏差容差的高带宽接收器。
模拟混频器由键控信号控制,以在视频 DAC 的输出和模拟 RGB 输入之间切换。模拟 RGB 输入需要以直流耦合的方式与模拟混频器接口,而且这些 RGB 输入仅限于没有同步电平基座的 RGB 信号。可以通过设置 I 2 C 总线位 KEN = 1 来启用键控控制。可以生成两种键控:一种是外部键(当 KMOD[2:0] 全部为逻辑 0 时来自 EXTKEY 引脚),另一种是内部像素色键(当 KMOD[2:0] 不全部为逻辑 0 时)通过将输入像素数据与内部 I 2 C 总线寄存器值 KD[7:0] 进行比较而生成。受 KMOD[2:0] 位控制,有 4 种方式可以比较像素数据(见表 8)。
我们开始特定的质心,并执行2D区域的生长过程,直到它触及另一个质心为止。然后将第二个质心用于进一步的区域生长。我们重复了这个2D区域的生长过程,该过程将所有质心连接起来,在大脑周围具有轮廓,边框厚度约为5像素宽度。然后,我们在轮廓周围形成滑动线。在每个像素上,位于水平线中的像素的平均值并具有质心的值±3的值,最接近平均值作为边界点固定。在每个像素的轮廓周围都重复这一点。连接在每个水平线上选择的点,从而为大脑提供了线边界。该边界被用作标记,并且封闭面罩内部的区域给出了大脑部分。
摘要:随着对沉浸式体验的需求的增长,显示器的大小和更高的分辨率越来越接近眼睛。但是,缩小像素发射器降低了强度,使其更难感知。电子纸利用环境光进行可见性,无论像素大小如何,都可以保持光学对比度,但无法实现高分辨率。我们显示了由WO 3纳米散件组成的大小至〜560 nm的电气可调节元像素,当显示大小与瞳孔直径匹配时,可以在视网膜上进行一对一的像素 - 示波器映射,我们将其称为视网膜电子纸。我们的技术还支持视频显示(25 Hz),高反射率(〜80%)和光学对比度(〜50%),这将有助于创建最终的虚拟现实显示。主要文本:从电影屏幕和电视到智能手机以及虚拟现实(VR)耳机,显示器逐渐越来越靠近人眼,具有较小的尺寸和更高的分辨率。随着展示技术的进步,出现了一个基本问题:显示大小和分辨率的最终限制是什么?如图1a,为了获得最沉浸和最佳的视觉体验,该显示应与人瞳孔的尺寸紧密匹配,每个像素与视网膜中的光感受器单元相对应。人类视网膜包含约1.2亿光感受器细胞。假设瞳孔直径为8毫米,理想的像素大小为〜650 nm,导致分辨率约为每英寸40,000像素(PPI)。随着像素尺寸收缩,主流发射显示器正在接近其物理极限。这个理论像素大小接近人眼的分辨率极限,代表了显示技术的最终边界,我们将其命名为“视网膜”显示。较小的像素尺寸降低了发射极尺寸,从而导致亮度显着下降,从而使它们越来越难以通过肉眼感知(1,2)。当前,市售的智能手机显示像素通常约为60×60μm²(〜450 ppi),比最终视网膜显示所需的理论尺寸大约10,000倍。已经在这个规模上,肉眼很难感知,尤其是在