Dermtech色素性病变测定(PLA)测试测量六个基因的表达(Prame,Linc00518,CMIP,B2M,ACTB,PPIA)。对通过直径至少5 mm的皮肤样品进行了测试,这些病变是通过角质层标本的非侵入性,专有的粘合剂斑块活检获得的。该测试在手掌,脚底,指甲或粘膜的手掌上不起作用,不应用于出血或溃疡病变。PLA测试报告包括两个结果。第一个是PLA MAGE(黑色素瘤相关的基因表达),它表明风险较低(未检测到Prame和Linc00518表达),中等风险(检测到Prame或Linc00518的表达)或高风险(同时检测到Prame和Linc00518的表达)。第二个结果是算法PLA评分,范围为0至100,得分较高,表明对恶性疾病的怀疑更高。尚不清楚PLA测试是否应用作皮肤镜检查的替代,分类或附加测试。PLAPLUS™测试还包括对TERT变体的测试。
2024年12月10日,阿联酋生物技术选择了Sulzer技术,以建立世界上最大的多乳酸生产设施Sulzer的技术已由Amirates Biotech为其即将到来的阿拉伯联合酋长国即将推出的多乳酸(PLA)生产工厂选择。该设施将分为两个阶段,每个阶段的年产能为80,000吨,每年的总生产能力为160,000吨。完成后,它将是世界上最大的PLA生产设施。PLA提供了传统塑料的可持续替代品。它被广泛用于包装,一次性用具等应用中,有助于减少对全球一次性塑料的依赖。Amirates Biotech将利用Sulzer的许可PLA技术来管理单个位置的所有生产步骤,包括乳酸盐生产,纯化和聚合。该设施还将使用基于植物的原料来大规模生产高质量的PLA生物塑料,从而将中东定位为生物塑料行业的关键参与者。可持续的传统塑料替代品,由于其在生物塑料领域的良好往绩,Sulzer的许可PLA技术已经在全球大多数PLA设施中使用。这一新发展增强了Sulzer致力于支持全球行业采用循环制造和建立更繁荣和可持续的社会的承诺。位于阿拉伯联合酋长国,建筑定于2025年开始,该工厂预计将于2028年初运营。该设施将使用乳酸(LA)作为原料来产生PLA,提供低碳足迹和可生物降解的常规塑料替代品,进一步促进了循环经济。Chemtech部门总裁Tim Schulten说:“我们很高兴与Amirates Biotech合作在这个开创性的项目上通过将我们先进的PLA生产技术带到阿联酋,我们正在支持该地区向更可持续的材料的过渡,并为更绿色的未来做出了贡献。” Emmanuel Rapendy,Sulzer Chemtech的全球首席聚合物和结晶继续说:“由于环境挑战强调了全球采用生物聚合物的需求,这是一个极为重要的项目,反映了我们从地面上解决可持续性的精神。我们的技术不仅可以实现更清洁的过程和最终产品,还可以确保我们的设备和系统具有很高的效率,从而限制了操作所需的能量输入。” Amirates Biotech首席执行官Marc Verbruggen促进了全球采用生物聚合物,他说:“我们与Sulzer的合作关系标志着我们建立世界一流的PLA生产设施的旅程中的重要里程碑。Sulzer的专业知识和创新解决方案对于实现我们领导生物聚合物行业的愿景至关重要,同时为更可持续的未来做出了贡献。”
为此,在可生物降解的聚合物和三种可生物降解聚合物的商业混合物(在中等含量和嗜热条件下)进行了批次厌氧消化实验。在中嗜和热嗜热条件下,仅聚(3-羟基丁酸)(PHB)和热塑性淀粉(TPS)表现出快速(25-50天)和重要(分别为57-80.3%和80.2-82.6%)向甲烷的转化为甲烷。从乳酸(PLA)(PLA)的甲烷生产速率非常低,在一定程度上,需要500天才能达到最终的甲烷产生,这对应于PLA转化为74.7-80.3%的PLA转化。在嗜热条件下,PLA的甲烷生产速率大大提高,因为仅需要60至100天才能达到相同的终极甲烷产生。乳酸利用细菌,如易二菌,摩尔菌和tepidanaerobacter很重要。同样,在38°C和58°C的TPS消化过程中突出了淀粉降解的细菌(来自梭状芽孢杆菌)。先前已知的PHB降解器(即,在pHB的嗜嗜和热嗜热AD期间,观察到肠杆菌,肠杆菌,delafieldii和cupriavidus)。
摘要:Polylactide(PLA)是具有不同商业应用的生物基合成聚酯。然而,由于PLA的加工性约束,抗性性和生物降解性,PLA被认为是不利的。因此,这项研究旨在基于高性手性对映射D-乳酸(D-LA)的聚酯(称为poly [d-la-co-(r)-3-羟基丁酸(3hb)](LAHB)(LAHB)的新型可生物降解修饰剂,以改善PLA的物理特性。高分子重量(HMW)LAHB是从大量的化学自动营养性杯状囊泡中合成的。通过使用含有葡萄糖的最小培养基并在C. necator中保留3HB均聚物的固有合成途径,从而实现了LAHB的量身定制过量生产,该培养基的固有合成途径可产生最高的产率,达到27 g/l/48 h。 LAHB的分子量实质上升高至1.1×10 6 g/mol,称为超高分子量(UHMW)LAHB。通过乳酸脱氢酶和丙酰基辅酶A转移酶变体的协同优化组合以及通过D-LA逃生途径的有效关闭来调节LAHB中的LA派系。PLA和两个选定的可生物降解的UHMW-/HMW-LAHB作为需求的可生物降解修饰符的组合允许提高PLA的加工性和影响抗性,同时保持透明度。LAHB的这些好处与传统生物基修饰剂(包括3HB基聚合物)的好处。关键字:杯状固定剂,聚乳酸,聚酯酸,聚羟基烷酸,LAHB,PLA,工程生物学,合成生物学■简介
1 中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian中国山东,旺东的韦芬大学,2放射学系,中国北京第三次中国PLA综合医院医院第三个医学中心,3北京北京工程研究中心,放射学技术与设备研究中心,高能源物理学研究所,中国医学院,医学院,北卡罗来纳州,高级医院4.和开发诊所,中国北京第七医学中心,中国北京第七医院,中国北京第七医学中心新生儿学系,中国北京7号核科学与技术学院,中国北京大学北京大学,北京大学,中国中国北京大学,第8位磁性磁性成像系,第三名,Xinxian nikian niverian nikian niverian niverian nivernian niverian niverian niverian niverian niverngianian niverian niverian niverngiang nikeang nikeang niverngian n diveian
摘要:一种主要的瓶颈降低了各种药物的治疗功效,是只有一小部分给药剂量到达作用部位。增加目标组织中药物量的一种有希望的方法是通过用细胞表面受体配体修饰的纳米颗粒(NP)递送,以选择性地鉴定靶细胞。但是,由于受体结合可以无意间触发细胞内信号传导级联,因此我们的目标是开发一种独立于受体的NP摄取方式。细胞穿透肽(CPP)是一种有吸引力的工具,因为它们允许有效的细胞膜交叉。到目前为止,由于其促进能力是非特异性的,因此它们的适用性受到严重限制。因此,我们旨在将有条件的CPP介导的NP内在化仅在目标细胞中。我们合成了不同的CPP候选物,并研究了它们对核心 - 壳 - 壳纳米颗粒系统中的影响,ζ电位和吸收特征,该系统由聚(乳酸糖 - 糖果)(PLGA)(PLGA)(PLGA)和聚(乳酸)和甲基乙二醇(乙烯乙二醇)(PLA)(PLA 10 K PEG)(PLA 10K)组成的壳纳米颗粒系统(PLA)(PLA)(PLA 10K)钉部分。我们将TAT47-57(TAT)确定为最有前途的候选人,随后将TAT修饰的PLA 10K 10K PEG 2K 2K聚合物与更长的PLA 10K PEG 5K 5K聚合物链结合在一起,用有效的血管紧张素转换酶2(ACE2)Infimitor-2(ACE2)Infimitor Mln-47660进行了修饰。MLN-4760启用选择性目标细胞识别时,额外的PEG长度在第一个非特异性细胞接触期间隐藏了CPP。仅在MLN-4760与ACE2的先前选择性结合后,已建立的空间接近度暴露了CPP,从而触发了细胞的摄取。与未修饰的颗粒相比,我们发现ACE2阳性细胞的摄取量有18倍。总而言之,我们的工作为有条件的纳米颗粒摄取为有条件的,高度选择性受体依赖性的纳米颗粒摄取铺平了道路,这在避免副作用方面是有益的。关键字:纳米颗粒靶向,聚合物纳米颗粒,多精氨酸,TAT,纳米粒子表面电荷,聚阳离子,电荷介导的摄取,顺序摄取
本文报告了对生物塑料厌氧降解和转化为沼气的微生物适应的新研究结果。进行了三种顺序的厌氧消化(AD)运行,以支持微生物适应于两种不同的生物塑料,基于淀粉的(SBS)和多乳酸(PLA)。SBS和PLA生物塑料的AD被接种物适应AD后对基板的适应而受到青睐。sbs转化为沼气增加了52%(从94 nl kgvs -1),与淀粉降解细菌的生长相关,例如氢孢子虫,卤代菌和卤素。PLA厌氧降解增长了97%(从395至779 NL Miogas KGVS -1),这与已知的Pla降解者(如替代性降解剂)(如替代菌粒,甲烷疗法生物杆菌)和tepidanaerobacter的适应性有关。微生物过度化似乎是一种合适的低成本策略,可以通过促进其厌氧生物降解并转化为沼气来增强生物塑料循环。
最近,由于其生物相容性和生物降解性,PLA(聚乳酸)及其用于生物医学应用的衍生物已越来越引起人们的注意。乳酸作为PLA的单体是由微生物,动物和植物产生的。用于生产PLA,分别采用了两种涉及直接多浓度和乳酸和乳酸的环式聚合的主要方法。这种聚合物与其他合成和天然聚合物结合使用,在药物输送系统中表现出了有希望的结果,特别是抗癌药物载体和组织工程,例如皮肤再生,骨骼再生和支架。此外,PLA的纳米制剂为克服传统抗癌药物和散装材料的缺点开辟了新的途径。此外,这种生物塑料的环保特征使其成为从包装到一次性餐具的各种应用程序的传统塑料的理想选择。在这方面,这种迷你审查涵盖了与该热塑性聚酯在抗癌药物递送和组织工程中的新应用相关的最新进展和挑战。
我与美国陆军战争学院和美国国家亚洲研究局 (NBR) 这两个组织关系密切。我是 1976 年卡莱尔的毕业生,目前担任 NBR 董事会成员,与战略亚洲项目密切合作。因此,我很高兴 NBR 能够与美国陆军战争学院战略研究所共同研究中国人民解放军 (PLA) 的发展情况,并于 2006 年 10 月 6 日至 8 日共同主办第 19 届解放军卡莱尔会议。《合理规划解放军:探索中国军队的轮廓》是战略研究所出版的本系列的第九卷,代表了 2006 年会议的参与者的集体学术成果。本书探讨了中国和解放军的领导层如何看待解放军的规模最符合中国的要求。除其他事项外,这一分析过程对解放军透明度问题做出了重要的新贡献,而解放军透明度问题长期以来一直是解放军观察家们关注的焦点。在我的职业生涯中,无论是在服役期间还是服役后,我都非常重视了解军队现代化的原因和方式。其中一些决定性因素包括国家政策和战略、理论、组织结构、任务和服务文化。虽然这份清单并不详尽,但它确实开始描绘出解放军现代化的广泛性和深度。
1 PET/CT分子成像单元,美国国家神经病学研究所,墨西哥城14269,墨西哥; franciscoromerocastell@gmail.com(f.r.r.c.); juansrosles_esmipn@hotmail.com(J.S.R.G。); nkerikfmmn@gmail.com(N.E.K.R.)2墨西哥城国家癌症研究所核医学系14080年,墨西哥; denissegr205@gmail.com 3 PET/CT分子成像单元,墨西哥城Salud Digna,墨西哥市04100,墨西哥4核医学部,医院DE ESPECIALIDADES DEL CESPECIALIDADES DEL CENTROMéDicodico dico nacional Siglo XXI,IMSS,IMS,墨西哥市,墨西哥市06720,墨西哥, 19.Anacalderon@gmail.com 5巴拿马城市512-9100卫生部成人神经科医生和运动障碍专家; dradioselina@gmail.com 6哥伦比亚国家癌症研究所临床神经病学系,哥伦比亚111511; andresm.bonilla@urosario.edu.co *通信:fabiosinisterra128@gmail.com(f.a.s.s.s.s.s.); dra.emillycm@gmail.com(e.a.c.m.);电话。: +52-5531698234(F.A.S.S.)†这些作者为这项工作做出了同样的贡献。