• 如果电路具有明确的静态工作点(如大多数模拟电路),则将工作点中实际作为源工作的端子标记为源会很方便。这将方便读取模拟器以文本或图形输出生成的设备电压。
θ 0 其中是斜入射角。一般来说,绕行相位全息图由许多散射体(像素)组成,每个散射体都可以实现所需的相位延迟。因此,由一系列错位的纳米结构形成超表面以实现真正的相位调制全息术。在我们的例子中,研究作为一种基本和未修饰的构建块的各向同性纳米结构,纯粹是为了验证空间频率正交性作为一个新的自由度。根据巴比涅原理 S1,S2,已知尺寸和形状的纳米孔和纳米盘可以看作是一对互补的构建块。除了前向散射强度外,互补孔径和不透明体的衍射图案非常相似。除了纳米制造的简易性和衍射效率之间的权衡之外,还相应地采用反射配置。
100 o c环境,2022年10月13日至11日80 o C环境,2022年11月23日至12日60 o C环境,2022年10月11日至2023年1月2日蓝色= 0.38毫米;绿色= 0.31毫米;红色= 0.21 mm
摘要我们报告了二氧化硅(SOS)晶状体上掺杂Erbium掺杂的平面波导的制造和表征,可提供低损耗和适用于用于工程光波导放大器(1530-1565 nm)的光纤维通信的较低的光限制。在这里,我们描述了一种超快的血浆掺杂(ULPD)技术,该技术是使用由飞秒激光(波长800 nm)诱导的血浆进行的,其重复速率为10 kHz,脉冲持续时间为45 fs。此处介绍的ULPD方法已成功应用于先前使用脉冲持续时间约为100 fs且重复速率为1 kHz的FS-LASER掺杂在SOS底物上的稀土材料。已经分析了厚度,折射率,光学传播损失,光致发光强度和光致发光寿命的厚度,折射率损失,光发光损失,光发光损失,光发光损失,光致发光的寿命。我们报告了C波段中<0.4dB/cm的低传播损失,长寿命为13.21 ms,在1532 nm和最大的寿命密度产物6.344 x10 19 s.cm -3。低损耗平面平板波导和高寿命密度的产品有望在SOS平台上制造带状的波导的进一步可能性。所提出的主动波导制造方法可能对制造平面的集成光学波导放大器和与基于硅的光子积分电路兼容的激光。
[1] S. Murali、LYW Evone、LMWa、BA Danila、LC Keong、LY Ting、BS Kumar、K、Sungsig,“Sn57Bi1Ag 焊料合金接头的微观结构特性”,IMAPS – 第 55 届国际微电子研讨会,波士顿,2022 年 10 月 5 日。[2] Q. Liu、Y. Shu、L Ma、F. Guo,“高电流密度下共晶 SnBi 焊点的微观结构演变和温度分布研究”,2014 年第 15 届国际电子封装技术会议。[3] P.Singh、L. Palmer、RF Aspandiar,“一种研究电迁移的新装置”,SMTA 泛太平洋微电子研讨会,2022 年 2 月 1 日,夏威夷瓦胡岛。 [4] IA Blech,“氮化钛上薄铝膜的电迁移”,J. of Appl. Physics,第 47 卷,第 4 期,1976 年 4 月。
Planar X 标准低通滤波器利用薄膜工艺技术,在各种介电基板上使用,这些基板专为在恶劣环境中使用而设计。低通滤波器响应通带从 DC 延伸到指定的截止频率,此时滤波器过渡到阻带。带通滤波器的通带由中心频率和带宽定义。通带滤波器响应的阻带低于和高于通带频率。Planar X 体积小、重量轻且可表面贴装,可用于大批量拾取和放置应用,是卫星通信、雷达和广播行业的理想选择。Smiths Interconnect 还可以提供增值、高可靠性测试选项,为任务关键型国防和太空应用提供保障。
1 j 2 ! 。 。 。 jk! p 2 j 2 ` ¡ ¡ ¡ kj k ´ 1 q ! pj 2` ¡ ¡ ¡` pk ´ 1 qjk ` 2 q ! p´ x 2 qj 2 。 。 。 p´ xkqjk , (1.8)