1人类遗传学系,莱顿大学医学中心,莱顿,荷兰2个转录实验室的机制,弗朗西斯·克里克研究所,弗朗西斯·克里克研究所,伦敦米德兰路1号,伦敦,NW1 1AT,英国3,英国3,哥伦比亚大学,哥伦比亚大学,哥伦比亚大学,哥伦比亚省哥伦比亚大学,Blegdamsvej 3B,2200 copenhagen,Denmark,blegdamsvej 3b,blegdamsvej 3b。 4 Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea 5 Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea 6 Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK 7 Department of Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam University荷兰阿姆斯特丹医学中心8号辐射肿瘤学系,密歇根大学,美国密歇根州安阿伯市,美国9号环境健康科学系,罗杰尔癌症中心,密歇根大学,美国密歇根州安阿伯市RNA Biomedicine中心,美国密歇根州安阿伯市,美国密歇根州安阿伯市,10 Max Planck Maxk Planck Inditute of Bioldogarigary Science of Science of Science of Moleclen of Morecilly,Morecull andermull of Morecull of Morecull gyten,3770707070707。1人类遗传学系,莱顿大学医学中心,莱顿,荷兰2个转录实验室的机制,弗朗西斯·克里克研究所,弗朗西斯·克里克研究所,伦敦米德兰路1号,伦敦,NW1 1AT,英国3,英国3,哥伦比亚大学,哥伦比亚大学,哥伦比亚大学,哥伦比亚省哥伦比亚大学,Blegdamsvej 3B,2200 copenhagen,Denmark,blegdamsvej 3b,blegdamsvej 3b。4 Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea 5 Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea 6 Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK 7 Department of Clinical Genetics, Section Oncogenetics, Cancer Center Amsterdam, Amsterdam University荷兰阿姆斯特丹医学中心8号辐射肿瘤学系,密歇根大学,美国密歇根州安阿伯市,美国9号环境健康科学系,罗杰尔癌症中心,密歇根大学,美国密歇根州安阿伯市RNA Biomedicine中心,美国密歇根州安阿伯市,美国密歇根州安阿伯市,10 Max Planck Maxk Planck Inditute of Bioldogarigary Science of Science of Science of Moleclen of Morecilly,Morecull andermull of Morecull of Morecull gyten,3770707070707。
本文讨论了在绝热量子计算机上实现自旋网络状态的可能性,该状态用于环量子引力方法中的普朗克尺度物理。讨论的重点是应用当前可用的技术,并分析了 D-Wave 机器的一个具体示例。介绍了一类简单的自旋网络状态,可以在 D-Wave 量子处理器的 Chimera 图架构上实现。然而,需要超越当前可用的量子处理器拓扑来模拟更复杂的自旋网络状态。这可能会启发新一代绝热量子计算机。讨论了模拟环量子引力的可能性,并提出了一种使用绝热量子计算解决图不变标量(哈密顿)约束的方法。所提出的结果为未来在量子退火器上模拟普朗克尺度物理,特别是量子宇宙学配置奠定了基础。
我们渐近地构造了一个静态球形激发态,该激发态在可重正化量子引力中无奇点,具有无背景性质。其直径由量子引力的关联长度给出,比普朗克长度长 2 个数量级,外部有史瓦西尾。内部的量子引力动力学采用非微扰高阶修正表达式来描述,该表达式假设了动力学在强耦合的边缘消失的物理要求。运行耦合常数是非线性和非局域性的表现,通过将其近似为依赖于径向坐标的平均场来管理。如果质量是普朗克质量的几倍,我们可以建立一个包含运行效应的引力势线性化运动方程组,并获得激发态作为其解。它可能是暗物质的候选者,并将为黑洞物理学提供新的视角。
2023:Tübingen,海德堡2022:kueichstätt-Ingolstadt,Mannheim,2021年:杜塞尔多夫,雷格斯堡,Kueichstätt-ingolstadt,Constance,Constance,Constance,Passau普朗克智能系统研究所,图宾根;德国经济协会的“计量经济学”委员会;马尔堡,康斯坦斯; BITKOM 2017年AI与物流委员会联合会议:LMU(统计研讨会),圣加伦大学,蒂尔堡大学,阿尔弗雷德·韦伯研究所,阿尔弗雷德·韦伯研究所(海德伯格):2016年:海德堡(数学系),波士顿大学学院(经济学研讨会),带有(量表午餐午餐)(经济学午餐)(经济学午餐)2014年,2014年(量表MEA-MAX PLANCK社会法与社会政策研究所LMU(金融计量经济学研讨会)
1 ,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国,奥尔登堡大学-26129德国奥尔登堡2纳米德2纳米德和隆德大学物理系 - 伦敦大学22100年,瑞典3号超快动力学系,麦克斯·普朗克多学科科学研究所 - 37077 GOTTINGER -37077 GOTTINGEN -4 4THENTHITY -SOSTUTTIR -NINAN -SOSTINTING- 37077 G¨ottingen, Germany 5 Max Planck Institute for Solid State Research - 70569 Stuttgart, Germany 6 Institut de Physique, Ecole Polytechnique F´ed´erale de Lausanne - 1015 Lausanne, Switzerland 7 Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles Los Angeles, CA, USA 8 Institute格拉兹技术大学实验物理学-8010格拉兹,奥地利9 John A. Paulson工程与应用科学学院,哈佛大学 - 马萨诸塞州剑桥,美国,美国
本文解决了实施旋转网络状态的可能性,该旋转网络在循环量子重力方法中用于绝热量子计算机上的Planck量表物理。讨论的重点是应用当前可用的技术并分析D-Wave机器的具体示例。它引入了一类简单的自旋网络状态,可以在D-Wave量子处理器的嵌合图架构上实现。但是,需要超出当前可用的量子处理器拓扑以模拟更复杂的自旋网络状态。这可能会激发绝热量子计算机的新一代。讨论了模拟循环量子重力的可能性,并提出了使用绝热量子计算来求解非变化标量(汉密尔顿)约束的方法。提出的结果为普朗克量表物理学的未来模拟(特定的量子宇宙学配置)建立了基础。
2 Luuk Schmitz 是科隆马克斯普朗克社会研究所 (MPIfG) 的高级研究员。3 Timo Seidl 是维也纳大学欧洲一体化研究中心 (EIF) 的博士后研究员 (Universitätsassociation)。4 Tobias Wuttke 是柏林巴德学院的博士后研究员。
Alexander Hartmaier 博士目前是德国波鸿鲁尔大学材料科学教授(材料力学系主任)和先进材料模拟跨学科中心 (ICAMS) 主任,负责微观力学和宏观建模系。自 2016 年起,他担任哈尔滨工业大学的客座教授,2016 年至 2019 年为蒋江学者项目成员。2005 年 11 月至 2008 年 5 月,他担任德国埃尔朗根-纽伦堡弗里德里希亚历山大大学材料科学教授。在此之前,他曾领导德国斯图加特马克斯普朗克金属研究所高华建教授“介观现象理论”系“纳米结构材料”小组。他也曾在该研究所完成博士论文,该论文于 2000 年荣获马克斯·普朗克学会奥托·哈恩奖章。在斯图加特马克斯·普朗克研究所任职期间,Hartmaier 博士曾以项目负责人和小组负责人的身份从事了三年的工业研究。他的研究工作重点是异质材料变形、断裂和疲劳的微观机械和尺度桥接建模,以及最近的数据导向方法和机器学习在材料科学中的应用。除了学术活动之外,Hartmaier 博士还担任德国材料学会德国材料学会 (DGM) 主席(2017/18 年度)、董事会成员(2013 年至 2018 年)以及青年科学家计划发言人(2011 年至 2014 年)。
1心理学的认知,情感和方法系,维也纳大学,奥地利维也纳大学。2心理学系和瑞士情感科学中心,瑞士日内瓦大学。3纽约大学心理学系,美国纽约,美国。 4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。 5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch3纽约大学心理学系,美国纽约,美国。4心理学和神经科学研究所,芝加哥大学,伊利诺伊州芝加哥,美国。5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。 6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch5环境与森林科学学院和美国华盛顿州华盛顿大学华盛顿大学心理学系。6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。 7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。 8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch6,美国加利福尼亚州斯坦福大学斯坦福大学心理学系。7 Lise Meitner环境神经科学集团,德国柏林Max Planck人类发展研究所。8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。 9认知科学中心,维也纳大学,奥地利维也纳。 10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。 11当前地址:环境与气候研究中心(ECH),奥地利维也纳。 电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch8 Emmett环境与资源跨学科计划,美国加利福尼亚州斯坦福大学斯坦福大学。9认知科学中心,维也纳大学,奥地利维也纳。10目前的地址:欧洲环境与人类健康中心,埃克塞特大学,英国佩林。11当前地址:环境与气候研究中心(ECH),奥地利维也纳。电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch电子邮件:kimberlycdoell@gmail.com; tobias.brosch@unige.ch
Alessandro Prigione博士于2002年从意大利米兰大学获得了医学博士学位,并于2008年获得意大利圣拉达尔大学的博士学位。 在接受培训期间,他在米兰 - 比科卡大学(University of Milan-Bicoccca)的神经系统疾病工作,美国加利福尼亚大学戴维斯大学(UCD)的线粒体疾病(UCD),鼠标诱导的多能干细胞(IPSCS)在米兰米兰的圣拉菲尔科学研究所的多能干细胞(IPSC),意大利米兰的IPSCS,以及Max Planck Instute in Max Planck Institute in Berlin Germany in Berlin Emany。 从2014年到2019年,他是德国柏林Max Delbrueck分子医学中心(MDC)的Delbrück研究员。 2019年,他搬到了德国杜塞尔多夫的海因里希海因大学(HHU),在那里他被任命为普通儿科系儿科代谢医学终身副教授。 Prigione组的兴趣是开发IPSC驱动的方法,用于发现影响线粒体代谢的罕见无法治愈的神经和神经发育障碍。 特定的重点是利格综合征,这是影响儿童的最严重的线粒体疾病。 使用Leigh综合征患者的神经元和脑器官,他们正在解剖神经元特异性疾病机制,以鉴定干预措施的靶标。 该实验室将基因组编辑技术应用于核和线粒体基因组来开发工程疾病模型。 他们采用模型使用高内感成像方法执行复合筛选。Alessandro Prigione博士于2002年从意大利米兰大学获得了医学博士学位,并于2008年获得意大利圣拉达尔大学的博士学位。在接受培训期间,他在米兰 - 比科卡大学(University of Milan-Bicoccca)的神经系统疾病工作,美国加利福尼亚大学戴维斯大学(UCD)的线粒体疾病(UCD),鼠标诱导的多能干细胞(IPSCS)在米兰米兰的圣拉菲尔科学研究所的多能干细胞(IPSC),意大利米兰的IPSCS,以及Max Planck Instute in Max Planck Institute in Berlin Germany in Berlin Emany。从2014年到2019年,他是德国柏林Max Delbrueck分子医学中心(MDC)的Delbrück研究员。2019年,他搬到了德国杜塞尔多夫的海因里希海因大学(HHU),在那里他被任命为普通儿科系儿科代谢医学终身副教授。Prigione组的兴趣是开发IPSC驱动的方法,用于发现影响线粒体代谢的罕见无法治愈的神经和神经发育障碍。特定的重点是利格综合征,这是影响儿童的最严重的线粒体疾病。使用Leigh综合征患者的神经元和脑器官,他们正在解剖神经元特异性疾病机制,以鉴定干预措施的靶标。该实验室将基因组编辑技术应用于核和线粒体基因组来开发工程疾病模型。他们采用模型使用高内感成像方法执行复合筛选。根据这种基于IPSC的方法,Prigione组鉴定出的一种可探测药物最近收到了欧洲药品局(EMA)来治疗Leigh综合征的孤儿药物标签,并且为此,这项临床试验正在开发中。