在这项研究中,我们提出了使用多平面和多层跨前(M3T)网络的三维医学图像分类器,以在3D MRI图像中对阿尔茨海默氏病(AD)进行分类。提出的网络协同委托3D CNN,2D CNN和变压器用于准确的AD分类。3D CNN用于执行本机3D表示学习,而2D CNN用于利用大型2D数据库和2D代表学习的预训练权重。使用具有感应性偏置的CNN网络有效地提取局部大脑中与AD相关的异常的信息信息。跨前网络还用于获得CNN后多平面(轴向,冠状和矢状)和多切片图像之间的注意力关系。也可以使用不感应偏置的变压器学习分布在大脑中较大区域的差异。在此期间,我们使用了来自阿尔茨海默氏病神经影像学计划(ADNI)的训练数据集,该计划总共包含4,786 3D T1加权MRI图像。对于有效数据,我们使用了来自三个不同机构的数据集:澳大利亚成像,生物标志物和生活方式旗舰研究(AIBL)(AIBL),开放访问Imaging研究(OASIS)的开放访问系列(OASIS)以及来自培训数据集中的一些ADNI数据。我们提出的M3T基于曲线(AUC)下的区域(AUC)和AD分类的分类精度,与常规的3D分类网络相结合。这项研究表示,所构成的网络M3T在多机构验证数据库中实现了最高的性能,并证明了该方法有效地将CNN和Transformer用于3D医学图像的可行性。
摘要火星大气的垂直不透明度结构对于理解冰(水和二氧化碳)和灰尘的分布很重要。我们提供了一个新的数据集,这些数据集来自Nomad/UVIS光谱仪在Exomars Trace Gas Orbiter上的新数据集,涵盖了一个半火星年(MY),包括我的34次全球防尘雨和几次区域性沙尘暴。我们讨论了特定的中层云特征,并与现有文献和随着数据同化的MARS全球气候模型(MGCM)进行比较。中层不透明度特征,被解释为水冰,并与MGCM中的湿透者升高相关,提供了证据表明,区域性沙尘暴可以促进蒸气到中层高度的运输(具有对大气逃避的潜在影响)。沙尘暴季节也对云特征的生命周期产生了明显影响,而尘土飞扬的季节早期与持久的中层云层相关。中层不透明度特征,并根据以前的文献解释为水冰。同化的MGCM温度结构与UVIS的不透明非常吻合,但是MGCM不透明度领域努力地重现中层冰的特征,这表明需要进一步发展水冰参数化。UVIS不透明度数据集为进一步研究火星大气的垂直气溶胶结构以及在数值模型中如何表示的机会。
塞内加尔天文学发展的科学战略 David Baratoux、Sylvain Bouley、Katrien Kolenberg、Maram Kaire - 巨行星大气监测 - 系外行星:搜索和特性描述 - 月球和木星撞击闪光监测 - 小行星、恒星掩星的监测和特性描述 - 变星监测
在行星表面的硅酸盐岩石的风化可以从大气中划出CO 2,以最终在行星内部埋葬和长期存储。这个过程被认为是对碳酸盐硅酸盐循环(碳循环)的基本负反馈,以维持地球上的克莱门特气候和潜在的温带系外行星。我们实施热力学,以确定风化速率是表面岩性(岩石类型)的函数。这些速率提供了上限,允许估计调节气候的最大风化速率。该建模表明,在给定岩石而非单个矿物质中矿物组合的风化对于确定行星表面上的风化速率至关重要。通过实施流体传输控制方法,我们进一步模拟了化学动力学和热力学,以确定受地球大陆和海洋壳构造及其上层岩石的启发的三种岩石的风化速率。我们发现,类似大陆壳的岩性的热力学风化速率比海洋壳的岩性特征低约一到两个数量级。我们表明,当CO 2二压压力降低或表面温度升高时,热力学而不是动力学会对风化产生强大的控制。在动力学和热力学上有限的风化状态取决于岩性,而供应限制的风化与岩性无关。我们的结果表明,热力学有限的硅酸盐风化的温度敏感性可能会激发对碳循环的正反馈,在这种情况下,随着表面温度的增加,风化速率降低。
是专门从事可持续真正资产投资的资产经理。自2007年以来,我们一直在提供引人注目的投资机会,以推动能源过渡和可持续基础设施。我们的目标是在支持清洁能源计划的同时提供弹性的回报,并促进全球基础设施的脱碳。
速度会减慢他的速度较少:国会主流共和党的干部已经耗尽,联邦司法机构现在充满了他的任命。,由于遗产基金会,特朗普将以更清晰的路线图上任。为了尊重法治,不要忘记特朗普律师的主张,即即使他下令谋杀政治竞争对手,他也将不受起诉。
随着世界面临气候变化和环境降解的紧急现实,我们对自然的经济依赖正变得对全球决策至关重要。生物多样性基于重要的生态系统服务,例如清洁空气和水,授粉,土壤生育能力和气候调节,所有这些服务对于维持地球上的生命并实现经济活动至关重要。大约有55%的全球GDP(约58万亿美元)中等或高度依赖自然,自然世界在维持农业,林业,旅游业和渔业等行业中起着基本作用1。
加利福尼亚 - 面对造成损害总规模的毁灭性野火和不确定性 - 上周发布了其初步预算,概述了州长Newsom如何设想利用现有和新的资金来源来加速行动以加速气候变化并建立弹性,包括通过该州的碳市场使用资金。(有关预算的气候和环境摘要,请参见此处)。虽然预算的最终版本要到6月15日才知道,但它显示了次国政府面临的野心,权衡和不确定性的类型,他们必须继续取得进展。有关此初步预算的关键要点,请参阅朱莉娅·斯坦(Julia Stein)的这篇文章。
1 Laboratire d'Etudes d'Etudes et d'Astrophysique,巴黎观察家,PSL大学,PSL大学中心,法国巴黎大学,巴黎大学,巴黎,法国,法国,外在空间事务,联合国外部空间事务,oftii ofvienna ofvienna,维也纳,维也纳,奥地利,橄榄油,3岁,louiana and liisiana and louisiana and louisiana,louisiana,Unitery,Unitery Arogy and batona,Unitery Arogy and batona,Unitery Ariana,Unitery Arya,Unitery Arya,Unitery Aron A.阿联酋航天局,阿布扎比,阿拉伯联合酋长国,意大利航天局,罗马,意大利,6日本航空航天勘探局,太空和宇航员研究所。Science (ISAS), Sagamihara, Kanagawa, Japan, 7 Laboratoire de planétologie et Géosciences, Nantes Université, Nantes, France, 8 National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, United States, 9 Cornell Center for Astrophysics and Planetary Science, Astronomy Department, Cornell University, Ithaca, NY, United States, 10 Russian Federation State Research Center Institute for Biomedical Programs, Russian Academy of Sciences, Moscow, Russia, 11 Indian Space Research Organisation, Bangalore, India, 12 Canadian Space Agency, Route de l ' Aéroport Saint-Hubert, Longueuil, QC, Canada, 13 Centre National d ' Etudes Spatiales, Paris, France, 14 AstrobiologyOU, Faculty of Science Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom, 15 China National Space Administration, Beijing, China, 16 Department of Planetology and Habitability, Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Madrid, Spain, 17 Laboratoire Interuniversitaire des Systémes Atmosphériques, Université Paris-Est Créteil and Université Paris Cité, CNRS,法国克雷蒂尔,法国,德国航空航天中心(DLR),航空航天医学研究所18号,辐射生物学系,研究小组天体生物学,德国科隆,德国,19欧洲航天局,ESTEC,NOORDWIJK,NOORDWIJK,荷兰,荷兰20号,地球和行星科学系20中国太空技术学院,北京,中国,22行星物理系,俄罗斯科学院太空研究所,俄罗斯,俄罗斯