1。将网络函数软件从硬件分解▪在较便宜的商品硬件又称网络函数虚拟化(NFV)上运行网络功能软件▪部署在(边缘)云上以进一步降低成本2。从数据平面分解控制平面la软件定义的网络(SDN)
本文利用塑性 CTOD 范围 Δ δ p 研究了 2024-T351 铝合金中的疲劳裂纹扩展 (FCG)。对 12 毫米厚的 CT 试样进行实验测试以获得 FCG 速率,并对圆柱形试样进行实验以获得应力 - 应变环。数值分析在材料、几何形状和载荷条件方面复制了实验工作,但假设纯平面应变状态,以获得 Δ δ p 。使用实验应力 - 应变环拟合材料参数。实验工作表明,随着应力比从 R = 0.1 增加到 R = 0.7 毫米,FCG 速率增加,这表明存在裂纹闭合现象。然而,对裂纹尖端后方第一个节点位置的分析表明,在平面应变状态下没有裂纹闭合,而在平面应力状态下发现最大值 36%。因此,即使在 12 毫米厚的样品中,表面也会影响 FCG 速率。发现 da/dN 与 Δ δ p 之间存在近似线性关系。与其他铝合金的比较表明,材料对 da/dN - Δ δ p 关系有显著影响。从平面应变状态到平面应力状态的变化由于裂纹闭合而降低了 FCG 速率。在平面应变状态下,应力比在 R = 0.1 – 0.7 范围内的影响很小,这也是因为没有裂纹闭合。最后,对塑性 CTOD 和裂纹处的累积塑性应变进行了比较
公司:IERUS Technologies, Inc.地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段 提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。事实证明,这种技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会使精度降低到这个极限之外。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见光传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
公司:IERUS Technologies, Inc. 地点:阿拉巴马州亨茨维尔 主题:N201-079 技术类别:先进电子技术 第二阶段提案标题:极其精确的星体跟踪器 SYSCOM:SSP FST 事件:WEST 2023 摘要:IERUS Technologies 和阿拉巴马大学亨茨维尔分校联手将 NASA 喷气推进实验室 (JPL) 开发的焦平面计量技术转化为现实。该技术能够以高精度定位焦平面阵列中的像素。该技术与精密望远镜相结合,可以测量焦平面上恒星的位置,精度优于 100 毫角秒。热分析表明,预期的环境不会降低超过此极限的精度。光学分析表明,标称设计将提供衍射极限性能。关键词:成像、计量、卫星、空间、可见传感器、星跟踪器、焦平面阵列、干涉测量法 POC:Stephen Fox,stephen.fox@ierustech.com NAICS:541712
图1:我们的模拟研究中涉及的离子,溶剂分子和TBT单体的插图。面板(a)和(b)分别描绘了有机溶剂分子1,3-二氧烷(DOL)和1,2-二甲基乙烷(DME)。面板(c)显示锂离子(li +),而面板(d)则显示BIS(三氟甲烷)磺胺酰亚胺(TFSI-)。面板(E)说明了4(噻吩-3-基)有益的阳离子 - π相互作用态,当苯环为z = 0平面时,带有锂的乙二醇(TBT),带有锂离子li +,而平面噻吩环则是硫烯环使角度呈角度,θ= 34。31◦使用Z = 0平面。TBT和Li +离子的苯环之间的最小距离为z min = 1。84˚A。面板(F)说明当将噻吩环放置在Z = 0平面时,相同TBT分子的阳离子-π相互作用状态,苯环的平面使角度θ= 34。31◦使用Z = 0平面。在这种配置中,噻吩环和li +离子之间的最小距离为z m in = 2。0°A。
幸运的是,飞机与铱星卫星星座相连,该卫星星座在五百英里的高空运行。紧急信标使用安全的数字信号向救援部门发送了求救信号和飞机的位置。铱星设备不仅仅是 GPS 或无线电求救信号,它还跟踪了飞机从起飞到坠毁的整个过程,绘制了飞行过程中每个时刻的实时轨迹。这是可能的,因为 66 颗铱星卫星中的每一颗都保持着设备之间的数字链接,确保设备在任何时间、任何地点(从南极洲到阿拉斯加)的可见性和通信。
图3:通过独立分子的平均平面(〜(10 1 1̅))生成的傅立叶电势(F obs)图支持成功鉴定黄氨酸分子内的氢原子位置,从而确认存在7小时的互变素体。f obs是指观察到的结构因子。轮廓代表通过两个独立分子采集的平均平面计算出的电子电位。分子与平均平面有些偏差。因此,某些原子在轮廓上显示在“下方”。仅显示正电子电位。轮廓线之间的步骤代表电子电位的5%步骤。原子颜色如下:氮(蓝色),氧(红色),碳(灰色)和氢(白色)。使用ololex2生成。
• Bypass capacitor placement – Place near the positive supply terminal of the device – Provide an electrically short ground return path – Use wide traces to minimize impedance – Keep the device, capacitors, and traces on the same side of the board whenever possible • Signal trace geometry – 8mil to 12mil trace width – Lengths less than 12cm to minimize transmission line effects – Avoid 90° corners for signal traces – Use an unbroken ground plane在信号迹线下方 - 带有地面的信号迹线周围的洪水填充区域 - 对于超过12厘米的迹线•使用阻抗控制的迹线•源 - 端端使用输出附近的串联阻尼电阻器•避免分支;缓冲信号必须单独分支
F. Kikuchi,Q。Liu,H。Hanada,N。Kawano,K。Matsumoto,T。Iwata,S。Gossens,K。Asari,Y。Ishihara,S。Tsuruta,S。 S. Sasaki,使用多个场景和Samousid的两个子卫星(Kugiya)的Picsecond精确度VLBI,无线电科学,44,1-7,2009。 Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。 H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。F. Kikuchi,Q。Liu,H。Hanada,N。Kawano,K。Matsumoto,T。Iwata,S。Gossens,K。Asari,Y。Ishihara,S。Tsuruta,S。 S. Sasaki,使用多个场景和Samousid的两个子卫星(Kugiya)的Picsecond精确度VLBI,无线电科学,44,1-7,2009。Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。 H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,,S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。J. Yan,S。Goossens,K。Matsumoto,J。Ping,Y。arada,T。Iwata,N。Namiki,N。Namiki,F。Li,G。Tang,G。Cao,J。Cao,H。Hanada和N. Kawano,N。Kawano,N。Kawano,CEGM02:使用Rang'e-1 Orbital Tracking Data,Plane and Plane and Plane and Plane and Plane and Plane and PlaneTary Data,Plane,科学,62,1-9,