2D材料令人兴奋,其中构图和原子布置在属性中起着决定性作用。发现新2D材料的潜在途径是从层压的3D相开始。常见的方法是将单个或几个原子层从具有强的化合物中剥落,具有强平面键和弱平面外键。剥落过程是通过机械力或离子交换和渗透肿胀促进的。[1,3,8]这包括均带有范德华或氢键之间的材料,例如石墨,MOS 2,H-BN和金属氧化物。尤其是,针对2D金属氧化物的注意力是由于其吸引人的功能而刺激的,并且富含结构和化学多样性以及电子特性。[9]它们的大量可能的氧化态对于实现较大的伪容量[8]的优势是与碳纤维和硫化物更高的化学稳定性相结合的,这对于增强电极的耐用性是可取的。[10]此外,氧化钛(TiO 2)纳米片具有适合光催化的特征,并允许逐层自组装。[11]仍然,新型合成途径是可取的,同时保持目标功能。除了机械剥落外,选择性蚀刻(也称为化学去角质)已被证明是从层压中层中层次较强的层压父3D晶体合成2D材料的替代途径。旗舰示例是2D MXENES,[5]由M n + 1 x n t z的通用公式描述,其中m是早期过渡金属,x为c和/或n,t z表示表面终止官能团,-o,-o,-oH,-f和cl。[12-14] MXENES通常是由A-Group元素的选择蚀刻来产生的,主要是来自父级最大相位,这是一大批原子层压板,迄今为止有150多个成员。[15]通过选择性蚀刻A层,实验研究已经确定了大约30种不同的MXENE,包括合金MXENES,显示出很高的计量物,用于从能量存储和催化到
准确的映射和本地化(Dill&Uijt de Haag,2016年)对于自动驾驶汽车等自主系统(Advs; Huang等,2019)和室内移动机器人技术(Hess等,2016)都是重要的。付出了巨大的努力,致力于使用3D光检测和范围(Lidar; Hess等,2016)传感器的稳健性与基于视觉的SLAM方法相比,使用3D光检测和范围(Lidar; Hess等,2016)传感器实现了准确的同时定位和映射(SLAM)(SLAM)(Qin等,2018,2018)。基于视觉的大满贯基于被动传感器(例如相机)可能对照明和观点变化敏感。相反,像3D激光雷达这样的主动传感器可以为周围环境提供距离测量,而环境不变。出色的鲁棒性和精确度使3D LiDAR成为用于大规模映射和本地化的必不可少的传感器。
新兴的可编程网络引发了对智能网络数据平面 (INDP) 的大量研究,该平面实现了基于学习的线速流量分析。INDP 中的现有技术专注于在数据平面上部署树/森林模型。我们观察到基于树的 INDP 方法的一个基本限制:尽管可以在数据平面上表示更大的树/森林表,但数据平面上可计算的流特征从根本上受到硬件约束的限制。在本文中,我们提出 BoS,通过以线速实现神经网络 (NN) 驱动的流量分析来突破 INDP 的界限。许多类型的 NN(例如循环神经网络 (RNN) 和转换器)旨在与顺序数据一起工作,它们比基于树的模型具有优势,因为它们可以将原始网络数据作为输入,而无需进行复杂的特征计算。然而,挑战是巨大的:RNN 推理中使用的循环计算方案与网络数据平面上使用的匹配动作范式有着根本的不同。BoS 通过以下方式应对这一挑战:(i)设计一种新颖的数据平面友好型 RNN 架构,该架构可以在有限的数据平面阶段执行无限的 RNN 时间步骤,从而有效实现线速 RNN 推理;(ii)用基于非开关变压器的流量分析模块补充开关上 RNN 模型,以进一步提高整体性能。我们使用 P4 可编程交换机作为数据平面实现了 BoS 的原型,并在多个流量分析任务中对其进行了广泛的评估。结果表明,BoS 在分析准确性和可扩展性方面均优于最先进的技术。
提出一种采用双Si掺杂平面优化的InP基高电子迁移率晶体管(HEMT)抗辐照结构,在沟道层下方增加Si掺杂平面,使InP基HEMT的沟道电流、跨导、电流增益截止频率和最大振荡频率均有较大提升。此外,详细比较了单Si掺杂和双Si掺杂结构在75keV质子辐照(剂量分别为5×10 11 cm − 2、1×10 12 cm − 2和5×10 12 cm − 2)后的直流(DC)和射频(RF)特性及其降低率。两种结构的DC和RF特性均随着辐照剂量的增加而逐渐下降,尤其在5×10 12 cm − 2剂量下下降最为显著。此外,双硅掺杂结构的特性退化程度明显低于单硅掺杂结构,尤其是在较大的质子辐照剂量下。通过插入另一个硅掺杂平面来提高质子辐射耐受性可能是由于本征载流子大幅增加,这必然会大大削弱辐照诱导缺陷对载流子去除的影响。
新年前夜,烟民们将在首都地区的酒吧和餐馆里最后一次吸入烟草烟雾。新年期间,除家中或车内外,任何建筑物内吸烟都将成为非法行为。自从我们上次撰写此主题以来,有进一步的证据质疑二手烟对健康构成严重威胁的说法。对此存在足够多的分歧,以至于先前说法的有效性。受到极大质疑。我们对烟草公司没有特别的尊重。我们也不怀疑吸烟是一种通常会导致严重疾病的习惯。但我们确实特别尊重个人选择是否吸烟的权利。我们也特别尊重市场的力量。如果有对无烟酒吧的需求(应该有),那么正常运作的市场将确保满足需求。无需政府机构介入并实现这一目标。·
增韧单片纤维增强抗氧化复合材料 (TUFROC) 代表了低成本、可重复使用的航天器热防护系统 (TPS) 的最新技术,具有耐高温能力,并已在美国空军 X-37B 上进行了飞行验证。这种两片式设计利用低电导率多孔二氧化硅基材与耐高温碳帽和表面处理相结合。NASA 更新了表面处理的化学成分,从而提高了高加热能力和可重复使用性。与原始配方(现称为标准 TUFROC)相比,这种称为高级 TUFROC 的新系统在相同的气动热加热条件下表面温度较低(低约 80 K)。加热降低的原因是新配方的催化效率较低,从而降低了表面放热原子复合率。多次电弧喷射测试活动表明,Advanced TUFROC 能够承受 1866 K 的长时间反复暴露或 1980 K 的较短时间暴露,而不会衰退或损坏 TPS。此外,还开发并测试了一种用于评估机翼前缘三维流动的改进型电弧喷射制品设计。与以前的工作相比,该制品允许在飞行相关条件下评估瓦片间隙处的加热情况,同时显著降低制品制造和电弧喷射设施配置成本。
正如琼斯在 2022 年 8 月所写,该航天器还在飞行 90 天后将一颗小型卫星送入轨道。虽然这颗卫星的用途和性质尚不清楚,但美国太空部队 (USSF) 获得的跟踪数据显示,这颗小型卫星一直非常靠近太空飞机。虽然这次飞行是中国在可重复使用航天器技术研究方面的一大步,但与 X-37B 的成就相比,它显得微不足道,X-37B 自 2010 年 4 月以来已进行了六次试飞。
摘要 - Quantum网络是通过量子通道之间量子处理器之间的相互作用形成的复杂系统。类似于经典的计算机网络,量子网络允许在量子计算中分布量子计算。在这项工作中,我们描述了一个量子步道协议,以在量子网络中执行分布式量子计算。该协议使用量子步行作为量子控制信号来执行分布式量子操作。我们考虑了离散时间置换量子步行模型的概括,该模型是网络图中与网络节点内部量子寄存器中量子步行者系统之间的相互作用。该协议从逻辑上捕获分布式量子组合,抽象硬件实现以及通过频道传输量子信息。控制信号传输映射到Walker系统在网络上的传播,而控制层和量子寄存器之间的相互作用嵌入到硬币操作员的应用中。我们演示了如何使用量子步行者系统执行分布式CNOT操作,该操作显示了分布式量子计算协议的通用性。此外,我们将协议应用于量子网络中的纠缠分布的任务。
在1D(M. Pierre)中进行证明: - u'' + v(x)u = 0 in r,| u(x)| ≤exp( - | x |1+ε)。通过集成,我们很容易获得| u'(x)| ≤cexp( - | x | 1+ε)。偶性参数:令φS.T。- φ'' +vφ=符号(u),φ(0)=φ'(0)= 0。Gronwall的论点:| φ(x)| + | φ'(x)| ≤cexp(c | x |)。r r - r | u | = r r r - r u·标志(u)= r r r - r u(-φ'' +vφ)= [ - φ'U +φu'] r -r -r -r -indue r e r e r e -r e -r e -r 1+ε→0。
1 乌克兰国立高等教育机构“Vasyl Stefanyk Precarpathian 国立大学”,乌克兰,liliavojch2017@gmail.com 2 伊万诺-弗兰科夫斯克国立医科大学,乌克兰,n.golod@ukr.net 3 国立皮罗戈夫纪念医科大学,乌克兰,medredaktor@gmail.com 4 乌克兰国立高等教育机构“Vasyl Stefanyk Precarpathian 国立大学”,乌克兰,zastavnaom@gmail.com 5 国立 Dragomanov 师范大学,chepurnal@gmail.com 6 苏梅马卡连科国立师范大学,乌克兰,petrorybalko13@gmail.com 7 苏梅国立农业大学,乌克兰,homenko.symu@gmail.com 8 Мykhailo Kotsiubynskyi 文尼察国立师范大学,乌克兰,valentina777808@gmail.com 9 国立皮罗戈夫乌克兰纪念医科大学,spkolisnyk@vnmu.edu.ua 10 乌克兰帕夫洛·蒂奇纳乌曼国立师范大学,in77na77@ukr.net