塞内加尔天文学发展的科学战略 David Baratoux、Sylvain Bouley、Katrien Kolenberg、Maram Kaire - 巨行星大气监测 - 系外行星:搜索和特性描述 - 月球和木星撞击闪光监测 - 小行星、恒星掩星的监测和特性描述 - 变星监测
1 Laboratire d'Etudes d'Etudes et d'Astrophysique,巴黎观察家,PSL大学,PSL大学中心,法国巴黎大学,巴黎大学,巴黎,法国,法国,外在空间事务,联合国外部空间事务,oftii ofvienna ofvienna,维也纳,维也纳,奥地利,橄榄油,3岁,louiana and liisiana and louisiana and louisiana,louisiana,Unitery,Unitery Arogy and batona,Unitery Arogy and batona,Unitery Ariana,Unitery Arya,Unitery Arya,Unitery Aron A.阿联酋航天局,阿布扎比,阿拉伯联合酋长国,意大利航天局,罗马,意大利,6日本航空航天勘探局,太空和宇航员研究所。Science (ISAS), Sagamihara, Kanagawa, Japan, 7 Laboratoire de planétologie et Géosciences, Nantes Université, Nantes, France, 8 National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, United States, 9 Cornell Center for Astrophysics and Planetary Science, Astronomy Department, Cornell University, Ithaca, NY, United States, 10 Russian Federation State Research Center Institute for Biomedical Programs, Russian Academy of Sciences, Moscow, Russia, 11 Indian Space Research Organisation, Bangalore, India, 12 Canadian Space Agency, Route de l ' Aéroport Saint-Hubert, Longueuil, QC, Canada, 13 Centre National d ' Etudes Spatiales, Paris, France, 14 AstrobiologyOU, Faculty of Science Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom, 15 China National Space Administration, Beijing, China, 16 Department of Planetology and Habitability, Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Madrid, Spain, 17 Laboratoire Interuniversitaire des Systémes Atmosphériques, Université Paris-Est Créteil and Université Paris Cité, CNRS,法国克雷蒂尔,法国,德国航空航天中心(DLR),航空航天医学研究所18号,辐射生物学系,研究小组天体生物学,德国科隆,德国,19欧洲航天局,ESTEC,NOORDWIJK,NOORDWIJK,荷兰,荷兰20号,地球和行星科学系20中国太空技术学院,北京,中国,22行星物理系,俄罗斯科学院太空研究所,俄罗斯,俄罗斯
摘要——本文介绍了一种使用 Brahms 多智能体建模语言对模型进行形式化验证来确保宇航员探测车 (ASRO) 团队自主系统可靠性的方法。行星表面探测车已被证明对几次载人和无人月球和火星任务至关重要。第一批探测车是遥控或手动操作的,但自主系统越来越多地被用于提高探测车操作的效率和范围,例如 NASA 火星科学实验室。预计未来的载人月球和火星任务将使用自主探测车协助宇航员进行舱外活动 (EVA),包括科学、技术和施工作业。这些 ASRO 团队有可能显著提高地面作业的安全性和效率。我们描述了一个新的 Brahms 模型,其中自主探测车可以执行几种不同的活动,包括在 EVA 期间协助宇航员。这些活动争夺自主探测器的“注意力”,因此探测器必须决定哪些活动当前最重要,并参与其中。Brahms 模型还包括一个宇航员代理,它可以模拟宇航员在舱外活动期间的预测行为。探测器还必须对宇航员的活动做出反应。我们展示了如何使用 Brahms 集成开发环境模拟这个 Brahms 模型。然后,还可以使用 SPIN 模型检查器通过从 Brahms 自动翻译到 PROMELA(SPIN 的输入语言),根据系统要求对模型进行正式验证。我们表明,这种正式验证可用于确定任务和安全关键操作是否正确执行,从而提高 ASRO 团队行星探测器自主系统的可靠性。
本文介绍了一种低成本、3D 打印、折叠式无人机的设计和开发,该无人机使用商用现货 (COTS) 组件用于陆地和行星外探索应用。飞行系统的设计方式是,无人机可以自行武装、根据需要重新定位,并在降落到预定的 GPS 位置之前获得稳定的悬停姿势。除了使用 GPS 导航进行着陆外,无人机不需要任何外部输入。本文还将介绍部署系统的设计和开发,该系统使用小型高功率火箭来模拟无人机的大气部署。测试旨在证明在大气注入期间从有效载荷罐部署无人机的可行性。该项目的独特之处在于它采用了一种新颖的方法,在弹道下降时从运载车辆部署无人机,从而允许将多架小型无人机插入大气层以进行行星探索。
1 航空航天系博士生,oliverjr@mit.edu,AIAA 学生会员 2 航空航天系访问学生,sebastian.hampl@tum.de 3 航空航天系教授,plozano@mit.edu,AIAA 副研究员
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
秋季 冬季 春季 夏季 (可选) 物理 (40A 或 002A/LA) (5) GEO 低年级选修课 (4) ETST (4) 美术、文学、哲学或 RLST (4) 数学 046 (4) 物理 (40B 或 002B/LB) (5) **物理 (040C 或 002C/LC) (5) 生物 005A/LA (5) 化学 001B/LB (5) 化学 001C/LC (5) 附加人文科学 (4) 总计:14 总计:14 总计:13 总计:9
简介:NASA的DECED目标之一是迈向开放科学,但是研究人员没有途径沉积和探索非生物/益生元有机提取物和反应的光谱。实验室实验模拟行星过程和mete-orite研究为生命检测工作提供了揭示可能发生的有机化学作用[1]。更重要的是,此类研究可用于阐明有利于生命起源(OOL)化学的条件,从而告知行星机构的可行性,以托管OOL事件[2]。许多非生物有机物在地球生活中没有,在代谢组学数据库或商业标准中不可用,从而阻碍了社区表征这些化合物的能力。因此,许多益生元有机物是未研究的,未报告和未知的(例如,图。1)。
Michel BLANC(法国天体物理和地球物理研究所) Alberto CELLINO(法国国家宇航局) 陈鹏飞(南京大学) Pascale EHRENFREUND(国际空间大学) Mohamed Ramy EL-MAARRY(哈利法大学) Bernard FOING(欧洲空间局) 季江辉(中国科学院紫金山天文台) 李雄耀(中国科学院地球化学研究所) 李杨(中国科学院地球化学研究所) 刘洋(中国科学院国家空间科学中心) Yoshizumi MIYOSHI(名古屋大学) Yoshiharu OMURA(京都大学) 秦利平(中国科学技术大学) Robert RANKIN(加拿大阿尔伯塔大学) Lutz RICHTER(德国大气和空间飞行中心) 苏彦(中国国家天文台)天文台,中国科学院 ) 田辉(北京大学地球与空间科学学院) 王德东(德国波茨坦亥姆霍兹地球科学中心) 王玲华(北京大学) 魏勇(中国科学院地质与地球物理研究所) 肖龙(中国地质大学(武汉)) 肖志勇(中山大学) 姚中华(香港大学) 岳超(北京大学) 何兆国(澳门科技大学) 张小平(澳门科技大学) 朱梦华(澳门科技大学)