《遗传多样性与植物育种》特刊旨在探索遗传多样性与植物育种策略进步之间的关键相互作用,特别关注解决不同的生物和非生物胁迫。本特刊旨在汇集遗传学、基因组学、育种、农学和生物技术的见解,以全面了解遗传多样性在植物改良中的作用。本特刊中包含的投稿涵盖了广泛的主题,包括遗传资源的表征和利用、性状定位和标记辅助选择的分子标记的开发和应用、基因组选择在预测育种价值中的利用,以及基因组编辑和转基因等基因组技术在育种计划中的应用。此外,本特刊将探讨遗传多样性在解决各种生物和非生物胁迫中的作用,例如抗病虫害、耐旱性和耐热性。我们欢迎所有相关投稿到本特刊。
加拿大农场信贷(“ FCC”)提供此知识内容(“资源”),仅用于一般信息目的;它并不是要提供业务,法律,财务或其他专业建议,也不应全部或部分依赖,也不应用作替代或替代特定专业建议。fcc对本资源中所包含的信息的准确性,完整性,适用性或有效性不对任何人负责或负责任何人的任何损害,损失或损害,而与使用,未能使用或误解这些资源有关的任何损害,损失或损害。资源中表达的任何意见都是相应作者的意见,不一定代表加拿大农场信贷的意见。不认可任何第三方,或者他们的建议,意见,信息,产品或服务由FCC明确给出或暗示。未经加拿大Farm Credit的事先书面许可。
使用电感,流量和磁性(IFM)技术控制和监测,呈现了具有先进的智能植物浇水系统的全面设计,实施和彻底的性能评估,该系统配备了IFM Technologies,该系统配备了高级控制和监测功能。该系统的主要目标是在确保最佳植物生长的同时优化用水。这是通过集成多种传感器来实现的,这些传感器可以监视关键的环境参数,例如土壤温度,金属锅的存在,环境温度和光强度。为了有效调节植物的水流,该系统采用了复杂的控制算法。此外,它采用远程监视和控制功能设计,使用户可以通过人机接口显示界面方便地访问和管理浇水系统。该系统的性能已在不同的植物生长情景中进行了实验验证,以证明其在现实世界中的有效性。与传统灌溉方法相比,结果显示了水效率,整体植物健康和资源利用的显着提高。这项研究通过为旨在可持续的植物种植和有效水管理的智能系统的开发和实施提供宝贵的见解,从而有助于智能农业技术的发展。这项研究的发现突出了整合高级控制算法和远程监控技术的潜力,以创造更可持续和资源的农业实践。
长期的载人太空探索任务需要环境控制和封闭式生命支持系统 (LSS),该系统能够生产和回收资源,从而满足人类在恶劣的太空环境中生存的所有基本代谢需求,无论是在旅行期间还是在轨道/行星站。随着任务距离地球越来越远,这将变得越来越必要,从而限制了从地球补给资源的技术和经济可行性。需要将生物元素进一步融入最先进的(主要是非生物的)LSS,从而形成生物再生 LSS (BLSS),以实现额外的资源回收、食品生产和废物处理解决方案,并使前往月球和火星的任务更加自给自足。有一整套功能对于维持人类在低地球轨道 (LEO) 的存在以及在月球或火星上成功定居至关重要,例如环境控制、空气再生、废物管理、供水、食品生产、舱室/栖息地增压、辐射防护、能源供应以及交通、通信和娱乐手段。在本文中,我们重点关注空气、水和食品生产以及废物管理,并讨论辐射防护和娱乐的一些方面。我们简要讨论了现有知识,强调了尚未解决的差距,并提出了短期、中期和长期内可能进行的未来实验,以实现载人航天探索的目标,同时也可能给地球带来好处。
1。植物 /农作物的微生物组 - 新项目,倡议和科学亮点2。< / div>开发最佳实践和建议 - 最低元数据要求和预分析参数3。新的微生物组技术4。植物微生物组研究的协调会议打算增加工作组成员之间的合作。将向科学界,欧洲委员会和国家机构提供研讨会的建议。要进一步制定该计划,我们请您通过提交非常简短的概述,并指出该计划主题 /主题是指的是C.M.J.Pieterse@uu.nl,直到31.7.2025。第6届EPSO关于植物和微生物组的研讨会将于2025年11月3日星期一举行,就在第6次植物微生物组研讨会开幕之前(2025年11月3日开放; 18:00h),提供了一个结合这两项事件的好机会。可以通过植物微生物组研讨会的会议网站进行EPSO研讨会的注册:https://6thplantmicrobiomesymesymposium2025.com/registration/。您可以在那里注册EPSO研讨会的门票,该车间的整天为72,05欧元,包括午餐和咖啡休息时间。有关EPSO研讨会的具体问题,请联系CornéPieterse(c.m.j.pieterse@uu.nl)。我们期待在11月与您会面Angela Sessitch,Paul Schulze-Lefert,CornéPieterse和Karin Metzlaff
5.2索引2 CaagcagaagagcggcataCgagat acatcg gtgactggagttc agacgtgtgtgtgtctcttccgatctccgatc 5.3索引3 caagcagcagaagacggcatacggcataCgctagagctagctcta gccta gccta gcctag gtgactggagttc agacggtgtgtgtgtgcttccgctcgtcggatcgcagtcgcgatc.4 index4 TGGTCA GTGACTGGAGTTC AGACGTGTGCTCTTCCGATC 5.5 Index 5 CAAGCAGAAGACGGCATACGAGAT CACTGT GTGACTGGAGTTCA GACGTGTGCTCTTCCGATC 5.6 Index 6 CAAGCAGAAGACGGCATACGAGAT ATTGGC GTGACTGGAGTTC AGACGTGTGCTCTTCCGATC 5.7 Index 7 CAAGCAGAAGACGGCATACGAGAT GATCTG GTGACTGGAGTTC AGACGTGTGCTCTTCCGATC 5.8 Index 8 CAAGCAGAAGACGGCATACGAGAT TCAAGT GTGACTGGAGTTCA GACGTGTGCTCTTCCGATC 5.9 Index 9 CAAGCAGAAGACGGCATACGAGAT CTGATC GTGACTGGAGTTCA GACGTGTGCTCTTCCGATC 5.10 Index 10 CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTC AGACGTGTGCTCTTCCGATC 5.11 Index 11 CAAGCAGAAGACGGCATACGAGAT GTAGCC GTGACTGGAGTTC AGACGTGTGCTCTTCCGATC 5.12索引12 caagcagaagacggcatacgagat tacaag gtgactggagttc agacgtgtgtgctttccgatc
今天,植物的生产正在增加,但是大多数工业过程产生了很多浪费和副产品,在当前情况下,回收或重视它们是当前的优先事项。最便宜的价值途径之一是发酵,尤其是乳酸杆菌的发酵,它产生乳酸和其他工业兴趣的分子,例如生物活性化合物,例如仙境酸,有机酸,有机酸,肽,肽,或酚类,它们在植物基质和植物植物中都广为植物,植物属于植物材料和植物植物,该植物属于植物材料。生物活性化合物可能会产生有益的健康作用,例如抗氧化剂,抗炎,抗菌或益生元活性。此外,乳酸发酵可以改善现有产物,并在食品,牲畜喂养和生物技术中提供新的应用,例如乳酸,蛋白质或青贮饲料的生产。本章回顾了通过不同的生物活性,活性分子和应用的许多植物生物外源或副产品的发酵过程中使用乳酸菌菌株的使用。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:小麦和大麦是全球种植的主要谷物作物,是世界三分之一人口的主食。然而,由于巨大的生物应力,年产量显着降低了30-70%。最近,在控制小麦和大麦病原体中,有益细菌的加速使用已获得突出。在这篇综述中,我们合成了有关有益细菌的信息,具有针对主要大麦和小麦病原体的保护能力,包括法式毛,tritici tritici和pyremophora teres。通过总结对参与植物 - 病原体相互作用的分子因素的一般见解,我们在一定程度上证明了有益细菌与植物防御小麦和大麦疾病有关的手段。在小麦上,许多杆菌菌株主要降低了法付乳杆菌和Z. tritici的疾病发生率。相比之下,在大麦上,一些假单胞菌,杆菌和帕拉伯克霍尔德属的效率。已针对P. teres建立。尽管描述了这些菌株的几种作用模式,但我们强调了芽孢杆菌和假单胞菌次级代谢产物在介导直接拮抗作用并诱导对这些病原体的抗性中的作用。此外,我们提出了确定有益细菌/分子的作用方式,以增强基于溶液的作物保护策略。此外,在众多实验之间存在明显的不一致,这些实验证明了抑制疾病的影响,并将这些成功转化为商业产品和应用。显然,谷物疾病保护的领域留下了很多供探索和发现的东西。