一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
A9) 诺福克海军造船厂有一个广泛的社区外展计划。由于 COVID-19,2020 年诺福克海军造船厂的社区外展计划并不正常。在过去的几年里,我们与朴茨茅斯公立学校建立了牢固的合作伙伴关系,我们的员工为朴茨茅斯公立学校的学生提供指导和阅读。我们全年参加了许多 STEM 活动,并在 Dry Dock Club 为朴茨茅斯公立学校 5 年级学生举办了一场 STEM 活动。诺福克海军造船厂还支持夏令营,例如朴茨茅斯的 Starbase Victory 和弗吉尼亚海滩、诺福克和纽波特纽斯的其他三个夏令营,帮助了 5,000 多名 STEM 领域的学生。诺福克海军造船厂指挥官与各种社区团体和 NNSY 阿拉巴马州进行了交谈
1植物医疗系,安登国立大学,安东斯36729,大韩民国; smvahsan@gmail.com 2 Applied Biosciences,Kyungpook国立大学,Daegu 41566,大韩民国; inmamumrassel@gmail.com(m.i.-u.-h.); ashim@knu.ac.kr(a.k.d.)3植物与土壤科学系,美国德克萨斯州科技大学基因组学研究所,德克萨斯理工大学,德克萨斯州拉伯克,美国德克萨斯州79409; mrahman@bsmrau.edu.bd 4 4602,杜姆基杜姆基Patuakhali科学技术大学昆虫学系8602; mahiimam@pstu.ac.bd 5 5 Kumho Life Science Laboratory,Chonnam国立大学,Gwangju 61186,大韩民国; ncpaulcnu@gmail.com 6大加工大学大麻生物技术学院,朝鲜共和国安东斯36729 *通信:hwchoi@anu@anu.ac.kr3植物与土壤科学系,美国德克萨斯州科技大学基因组学研究所,德克萨斯理工大学,德克萨斯州拉伯克,美国德克萨斯州79409; mrahman@bsmrau.edu.bd 4 4602,杜姆基杜姆基Patuakhali科学技术大学昆虫学系8602; mahiimam@pstu.ac.bd 5 5 Kumho Life Science Laboratory,Chonnam国立大学,Gwangju 61186,大韩民国; ncpaulcnu@gmail.com 6大加工大学大麻生物技术学院,朝鲜共和国安东斯36729 *通信:hwchoi@anu@anu.ac.kr
该项目的目标是在农作物中建立合成遗传单元。具有完全合成基因组的植物可以可持续地提供丰富的产品和服务,从食品到材料、药物等等。迈向合成植物基因组的关键第一步是开发构建模块:在植物细胞中建立合成遗传单元,特别是合成染色体和合成叶绿体。该项目旨在设计、构建、交付和维护可在活体植物中存活的合成染色体和合成叶绿体。一个成功的项目不仅将展示完全合成植物基因组道路上的关键一步,而且本身将使我们的主要作物更具生产力、更具弹性和更可持续。该项目将联合合成生物学和植物生物学方面的专业知识,催化下一代植物合成生物学,释放植物的新功能以满足人类未来的需求。
该计划的目标是在作物植物中建立合成遗传单位。具有完全合成基因组的植物可以可持续提供大量的产品和服务,从食物到材料,医学及其他地区。迈向合成植物基因组的关键第一步是开发构建基础:建立合成遗传单元,特别是合成染色体和合成叶绿体中,在植物细胞中。该程序旨在设计,建造,交付和维持合成染色体和合成叶绿体,这些叶绿体可在活植物中可行。成功的计划不仅会在完全合成植物基因组的道路上展示至关重要的一步,而且还可以使我们的主要作物更加生产力,弹性和可持续性。该计划将团结合成生物学和植物生物学方面的专业知识,以催化下一代植物合成生物学,释放植物的新能力,以满足人类的未来需求。
干扰会改变森林的环境条件。生长在不同干扰历史和不同环境中的植物可能采取不同的生活史策略,但关注这一效应的研究较少。本研究全面调查了中国东部两种不同干扰历史的亚热带森林的植物多样性、生物量和功能性状,以探讨其生活史策略的差异。受干扰森林的生物多样性略高于受保护森林。受保护常绿阔叶林的生物量显著高于受干扰常绿阔叶林(P < 0.05)。保护林的叶组织密度 (LTD) 显著高于受干扰林,而叶片厚度 (LT)、叶片干物质含量 (LDMC)、小枝组织密度 (TTD)、小枝干物质含量 (TDMC)、树皮组织密度 (BTD) 和干物质含量 (BDMC) 以及茎组织密度 (STD) 和干物质含量 (SDMC) 均显著低于受干扰林( P < 0.05)。在相关的植物多样性、生物量和功能性状方面,保护林采取资源获取策略,降低生物多样性,发展高叶面积和比叶面积以及低 LT、LDMC、TTD、TDMC、BTD、BDMC、STD 和 SDMC 等多种功能性状以支持较高的生物量积累速率。受干扰林采取资源保护策略,提高生物多样性,发展相反的性状组合,降低生物量积累速率。对受保护森林和受干扰森林中植物的多样性、生物量和功能性状进行全面调查,并随后评估植物的生活史策略,将有助于调查区域生物多样性和碳储量,为TRY和中国植物性状数据库提供数据,并改善中国东部的生态管理和恢复工作。
摘要 成簇的规律间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(Cas)是细菌和古菌中对抗入侵核酸和噬菌体的适应性免疫系统。根据效应蛋白的组成,CRISPR/Cas大致分为多种类型和亚型。其中,VI型CRISPR/Cas系统尤受关注,有VI-A、VI-B、VI-C和VI-D四个亚型,被认为从转座子进化而来。这些亚型在结构架构和机制上表现出差异,具有多种Cas13a(C2c2)、Cas13b1(C2c6)、Cas13b2(C2c6)、Cas13c(C2c7)和Cas13d效应蛋白。CRISPR/Cas13 核糖核酸酶将前 crRNA 加工成成熟的 crRNA,后者在病毒干扰过程中靶向并敲除噬菌体基因组的单链 RNA。这种蛋白质的高特异性 RNA 引导和 RNA 靶向能力使其能够与多种效应分子融合,为 Cas13 介导的 RNA 靶向、追踪和编辑领域开辟了新途径。CRISPR/Cas13 具有靶向包括植物在内的 RNA 的独特功能,因此可以用作一种新的工具,用于工程干扰植物病原体(包括 RNA 病毒),具有更好的特异性,并可用于植物中的其他 RNA 修饰。荧光探针标记的失活可编程 Cas13 蛋白可用作体外 RNA 研究的替代工具。工程化的 Cas13 也可用于可编程的 RNA 编辑。CRISPR/Cas13 的高靶向特异性、低成本和用户友好的操作使其成为多种基于 RNA 的研究和应用的有效工具。因此,本章的重点是 CRISPR/Cas 系统的分类、VI 型 CRISPR/Cas 系统的结构和功能多样性,包括其发现和起源、机制以及 Cas13 在植物 RNA 编辑中的作用。
b'MSC植物学是一项为期两年的课程,有助于对生物学主题有更好,更深入的了解。该课程具有实用性和理论结构。在实验室中给学生提供课程,以更好地了解植物生活。该课程旨在涵盖诸如微生物学,植物学,植物解剖学,分子生物学等的选修和核心主题。追求硕士学位植物学的过程还可以帮助学生在诸如兽医,农艺学,细胞学,林业等学科方面进行专业化。
绿色,浅层混合和白色的芽均已筛选以确定切割效率。之后,我们验证了只有白色和淡色的材料的整体平均值约为50%+的编辑效率(板上的白色芽/总芽)。
谁可以参加 培训计划每批最多可容纳 25 名参与者。 第二年及以上的博士生将被优先考虑。 需要具备 Crispr 以及植物分子生物学的基本知识。 与基因组编辑 EFC 项目相关的科学家、博士后和研究学者将优先考虑。 2025 年 2 月 3 日至 7 日 – 博士后研究员和早期职业科学家。(https://forms.gle/wMJEeaJzhwYviARp7) 2025 年 2 月 10 日至 14 日——博士生(第 2 年及以上)和研究学者(具有至少 6 个月的经验)。(https://forms.gle/RMmeh2VYRTAhiEKx7) 旅行和住宿 参与者必须承担自己的旅行、住宿和伙食费用。从住宿地点到培训地点的当地旅行安排由参与者自行安排。主办方将承担培训期间的工作午餐。