基础模型是对大量数据进行预训练的大型模型。通常可以以最小的努力来适应各种下游任务。但是,由于基础模型通常是在从互联网中提出的图像或文本上进行预培训的,因此它们在植物表型等植物域中的性能受到质疑。此外,完全调整基础模型是耗时的,需要高计算能力。本文研究了植物表型设置和任务的基础模型的有效适应。我们对三个基础模型(MAE,Dino和Dinov2)进行了大量实验,对三个必需的植物表型任务:叶子计数,实例阶段和疾病分类。特别是,预先训练的骨干被冷冻,同时评估了两种不同的调整方法,即适配器调整(使用lora)和解码器调整。实验结果表明,基础模型可以充分地适应植物表型任务,从而产生与针对每个任务的最先进的模型(SOTA)模型相似的性能。尽管在不同任务上表现出很高的传递能力,但在某些情况下,精细调整的基础模型的表现比SOTA任务特定的模型稍差,这需要进一步研究。
b'MSC植物学是一项为期两年的课程,有助于对生物学主题有更好,更深入的了解。该课程具有实用性和理论结构。在实验室中给学生提供课程,以更好地了解植物生活。该课程旨在涵盖诸如微生物学,植物学,植物解剖学,分子生物学等的选修和核心主题。追求硕士学位植物学的过程还可以帮助学生在诸如兽医,农艺学,细胞学,林业等学科方面进行专业化。
4 作为审核的一部分,我们可能会邀请申请人与项目主任会面,讨论最终选拔之前的任何关键问题/疑虑——此讨论可以以虚拟方式进行,或者我们可能会通过电子邮件就您的提案的某些方面寻求澄清。
It gives us immense pleasure to extend invitation to you to participate in the upcoming National Conference and Zonal Meet of Mid Eastern Zone of Indian Phytopathological Society (IPS-MEZ) on “ Plant Microbes Interaction for Sustainable Agriculture and Food Security” scheduled from January 3 to 4 2025 at Rani Lakshmi Bai Central Agricultural University (RLBCAU), Jhansi, Uttar Pradesh.rlbcau于2014年根据《 2014年中央农业大学法案》(Act No.2014年10月10日)。 与其他农业大学一样,RLBCAU具有在农业和盟友不同分支,从事农业研究,进行扩展教育计划并促进与国国和国际学术研究所的联系的关键目标。2014年10月10日)。与其他农业大学一样,RLBCAU具有在农业和盟友不同分支,从事农业研究,进行扩展教育计划并促进与国国和国际学术研究所的联系的关键目标。
前 NIROP 弗里德利位于明尼苏达州弗里德利市内工业区的东河路沿线(图 1)。前 NIROP 弗里德利及其相邻的地产现在是北方 Stacks 工业园区。2022 年,前 NIROP 弗里德利因成功的场地再开发而获得美国环境保护署 (EPA) 颁发的“场地再利用联邦设施卓越奖”。海军从 1940 年到 2004 年拥有前 NIROP 弗里德利,并负责该场地的环境清理。北方泵公司一直为海军舰艇生产武器,直到第二次世界大战结束。第二次世界大战后,其他私人承包商(FMC 公司、联合防务有限合伙公司和英国航空航天工程公司)继续在该工厂制造武器系统。前 NIROP 弗里德利从 1940 年代到 1970 年代初的历史运营和处置实践导致化学物质排放到土壤和地下水中。前 NIROP 弗里德利地下水中令人担忧的化学物质是一组通常被称为氯化挥发性有机化合物 (CVOC) 的化学物质。EPA 于 1989 年根据《综合环境反应、补偿和责任法案》(CERCLA,也称为超级基金)将前 NIROP 弗里德利列入国家优先事项清单。该物业被划分为三个可操作单元 (OU),以解决向环境中的排放问题。OU1 是前 NIROP 弗里德利场地边界内的地下水,其中包含历史运营产生的 CVOC。OU2 包括场地大部分土壤,但 OU3 指定为重点区域的土壤除外。OU3 包括前电镀车间下面的土壤(图 1)。针对 OU2 和 OU3 的 CERCLA 调查和响应行动已经完成,因此,EPA 将这些 OU 从国家优先事项名单中删除(OU2 于 2014 年 8 月 29 日删除,OU3 于 2018 年 9 月 17 日删除)。
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
绿色,浅层混合和白色的芽均已筛选以确定切割效率。之后,我们验证了只有白色和淡色的材料的整体平均值约为50%+的编辑效率(板上的白色芽/总芽)。
▪使用自定义的单链寡核苷酸来干扰目标基因内复制叉处的DNA复制,从而导致将所需碱(因此,突变)引入DNA中。▪使用:在设计寡核苷酸是互补的精确位置中引入非随机突变(例如,基本变化)。▪非转基因作为产品
干扰会改变森林的环境条件。生长在不同干扰历史和不同环境中的植物可能采取不同的生活史策略,但关注这一效应的研究较少。本研究全面调查了中国东部两种不同干扰历史的亚热带森林的植物多样性、生物量和功能性状,以探讨其生活史策略的差异。受干扰森林的生物多样性略高于受保护森林。受保护常绿阔叶林的生物量显著高于受干扰常绿阔叶林(P < 0.05)。保护林的叶组织密度 (LTD) 显著高于受干扰林,而叶片厚度 (LT)、叶片干物质含量 (LDMC)、小枝组织密度 (TTD)、小枝干物质含量 (TDMC)、树皮组织密度 (BTD) 和干物质含量 (BDMC) 以及茎组织密度 (STD) 和干物质含量 (SDMC) 均显著低于受干扰林( P < 0.05)。在相关的植物多样性、生物量和功能性状方面,保护林采取资源获取策略,降低生物多样性,发展高叶面积和比叶面积以及低 LT、LDMC、TTD、TDMC、BTD、BDMC、STD 和 SDMC 等多种功能性状以支持较高的生物量积累速率。受干扰林采取资源保护策略,提高生物多样性,发展相反的性状组合,降低生物量积累速率。对受保护森林和受干扰森林中植物的多样性、生物量和功能性状进行全面调查,并随后评估植物的生活史策略,将有助于调查区域生物多样性和碳储量,为TRY和中国植物性状数据库提供数据,并改善中国东部的生态管理和恢复工作。
