现代农业面临的挑战既包括粮食供应,也包括生物能源的获取,这些挑战是全球性的,包括因人口增长、饮食习惯改变和气候变化而导致的粮食需求增加。最大的挑战之一是实现产量的可持续增长,采用更好的农业实践并开发能够生产具有营养成分和质量的食品的品种,以及更能耐受不同类型的生物和非生物胁迫(DaMatta 等人,2010 年;Lobell;Gourdji,2012 年;McCouch 等人,2013 年;Eisenstein,2013 年;粮农组织,2019 年)。此外,耕地使用量的不断增加对森林砍伐造成了重大影响(Campbell et al.,2008)。
这种情况在 8 年前开始发生变化,当时马克斯普朗克感染生物学研究所所长 Emmanuelle Charpentier 和加州大学生物化学家 Jennifer A. Doudna 在《科学》杂志上发表了一篇开创性的文章,题为《可编程双 RNA 引导的 DNA 内切酶在适应性细菌免疫中的作用》,文中描述了短而重复的回文序列如何规律地聚集和间隔开来,为细菌和古菌提供针对病毒和质粒的适应性免疫,并表明此类细菌/古菌使用 CRISPR RNA 来引导入侵核酸的裂解。从那时起,基因工程领域进入了一个全新的革命性阶段,可以使用基于 CRISPR/Cas 的系统和可编程 RNA,从而让几乎任何分子生物学实验室的科学家能够改变或编辑(这个术语已经更为常见)真核细胞基因组中的特定序列。因此,利用这些“分子剪刀”,就可以“切割” DNA 的特定部分,从而导致细胞产生或不产生某些蛋白质。由于这一发现,夏庞蒂埃和杜德纳获得了2020年诺贝尔化学奖。
新型基因编辑技术中使用的核酸酶主要有四类,分别是:巨核酸酶、锌指核酸酶(ZFN);转录激活因子样效应核酸酶 (TALEN);以及成簇的规律间隔的短回文重复序列 (CRISPR) 相关 (Cas) (Gaj 等人,2016)。巨核酸酶是一种在特定区域切割 DNA 的内切核酸酶,可识别大于 12 bp(碱基对)的序列。 LAGLIDADG 巨核酸酶家族包含 I-CreI 和 I-SceI,它们是第一种用于基因编辑的酶。由于只有少数氨基酸残基与核苷酸接触,这些酶被设计用于在特定位点切割基因(Paques;Duchateau,2007)。此外,ZFN 是一种人工酶,也是最早用于诱导植物靶向突变的酶之一。这些酶是由锌指型结构域和限制性酶 Fok I 的结构域融合产生的。与基因编辑中使用的其他核酸酶一样,ZFN 会在需要修复的 DNA 特定位置插入双链断裂 (DSB),并且由于修复机制中的故障,可能会出现突变 (Carroll, 2011)。使用该系统的主要问题是这种酶的高毒性,以及它会产生许多脱靶效应(Cornu et al., 2008; Ramirez et al., 2008),这会损害不应改变功能的基因的功能(Zhang et al., 2015)。随着版本的合并
地址:巴西的Arapiraca-Alagoas电子邮件:Maryaazevedo53@gmail.com orcid:https://orcid.org/0009-0002-0379-622x摘要摘要摘要摘要一般焦虑症(TAG)是一种心理状况,是一种心理状况,是一种心理上的,是由过度和持续的关注者表现出来的,这些事件和艰难的活动以及各种活动的活动,以及各种活动,以及各种各样的活动。鉴于此,此客观评论是评估普遍焦虑症患者中药用植物的使用。工作是指系统评价,所使用的数据库是Medline,Scopus,Web of Science和Lilacs。在发现的许多文章中,研究仅着眼于抑郁症,仅在草药中进行其他研究,并且有必要应用包容性和排斥的标准,仅留下清楚地呈现用作抗抑郁药的草药的文章,因此可以看到15篇文章。总而言之,分析的药用植物,例如piper甲壳虫,苏巴氏紫罗兰,瓦莱里式官方,银杏biloba,glauca galphimia和胃矩阵的治疗潜力可用于焦虑治疗。但是,研究中的反复限制(例如样本量,缺乏安慰剂和主动对照组以及利益冲突)可以防止其有效性得出明确的结论。在这一领域的研究进步需要更严格的方法,重复现有研究以及纳入健壮的比较组,以便在临床实践中可以将这些治疗视为可行的替代方法。关键词:关注点,抗抑郁药,草药,治疗性。抽象的普遍焦虑症(GAD)是一种心理状况,其特征是过度和持续的担忧,难以控制,对各种事件和日常生活的活动。鉴于此,本综述旨在评估普遍焦虑症患者中药用植物的使用。 工作是指系统评价,所使用的数据库是Medline,Scopus,Web of Science和Lilacs。 在发现的许多文章中,研究仅关注鉴于此,本综述旨在评估普遍焦虑症患者中药用植物的使用。工作是指系统评价,所使用的数据库是Medline,Scopus,Web of Science和Lilacs。在发现的许多文章中,研究仅关注
我,Juan Pablo Arciniegas Vega,已成年,现居住在圣地亚哥-德卡利,公民身份号码为比亚维森西奥市第 1121914279 号,我以论文、专著或学位论文作者的身份,撰写了题为“从木薯(Manihot esculenta Crantz)组织化胚胎发生结构的分离原生质体中再生植物的协议”的论文、专著或学位论文,在此以数字或电子格式(CD-ROM)交付副本及其附件(如适用),并授权洛斯亚诺斯大学按照 1982 年第 23 号法律、1993 年第 44 号法律、1993 年第 351 号安第斯决定、1995 年第 460 号法令和其他有关此事的一般规定,以各种形式使用和利用,以印刷和数字格式,或已知或未知的格式,全部或部分地复制、公开传播、编辑和分发我的学位作业或论文。
烟草变换。 div>生成转基因线T0。 div>该试验的烟草线对象是由K326商业品种的烟草植物的CRISPR/CAS9技术产生的。 div>为此,由烟草植物的农杆菌根源介导的,具有相应的转化载体,其中包含DSRED和NPTII蛋白的转录单位(选择标记物)(选择标记),CAS9蛋白的转录单位,以及用于辅助辅助的转录单元的转录单位,以辅助构图。 div>
在近几十年内,涉及DNA精确操纵的核酸酶的技术已经发生了深刻的进步,成为了诱导音节突变的有希望的替代方法,并且对基因表达的薄而控制。是基因组编辑,例如核酸酶锌指(锌指核酸酶),具有转录本激活型效应的数字(Talens,英语转录本类核酸酶),以及最近的CRISPR/CAS技术(来自英语粘膜调节性调节性的短与核酶壳相关)。后者具有其革命性,尤其是为了缘故,普遍性和相对简单性(Pickar-Oliver; Gersbach,2019年)。此外,CRISPR/CAS是一种灵活的工具,需要进行修改,这有助于其持续的改进并多样化其在细胞功能和生物技术中的应用。