r e s u与使用合成杀虫剂相比,鉴于其用途的优势,如今已开始使用杀虫剂植物,其中包括:降低人类健康和环境的风险。 但是,这种植物也可能对天然生态系统有害,尤其是对于进行授粉的物种,例如Azadirachta植物表明A. Juss。 因此,这项研究旨在将有关使用常见的输入作为抗阳性的后果,由neem -Azadirachta植物产生的抗阳性的后果,指示通过书目审查授粉昆虫的生物多样性。 因此,已经观察到,基于树的产物会对授粉昆虫产生有害或致命作用,包括产卵,食物,生长以及其他可能导致授粉媒介灭绝的作用。 因此,得出的结论是,印em树的毒性不仅限于人类(例如城市害虫或农业中存在的昆虫)所见的昆虫,在这些昆虫,授粉媒介,所有植物群体和依赖授粉过程的个人之外,使用印em危害了昆虫。 关键字:环境影响。 植物杀虫剂。 警察。 Azadirachta的效果表示A. Juss。 然而,这种植物也可能对自然生态系统有害,这对执行腐蚀的物种特殊,因为植物Azadirachta表明A. Juss。 授粉。r e s u与使用合成杀虫剂相比,鉴于其用途的优势,如今已开始使用杀虫剂植物,其中包括:降低人类健康和环境的风险。但是,这种植物也可能对天然生态系统有害,尤其是对于进行授粉的物种,例如Azadirachta植物表明A. Juss。因此,这项研究旨在将有关使用常见的输入作为抗阳性的后果,由neem -Azadirachta植物产生的抗阳性的后果,指示通过书目审查授粉昆虫的生物多样性。因此,已经观察到,基于树的产物会对授粉昆虫产生有害或致命作用,包括产卵,食物,生长以及其他可能导致授粉媒介灭绝的作用。因此,得出的结论是,印em树的毒性不仅限于人类(例如城市害虫或农业中存在的昆虫)所见的昆虫,在这些昆虫,授粉媒介,所有植物群体和依赖授粉过程的个人之外,使用印em危害了昆虫。关键字:环境影响。植物杀虫剂。警察。Azadirachta的效果表示A. Juss。然而,这种植物也可能对自然生态系统有害,这对执行腐蚀的物种特殊,因为植物Azadirachta表明A. Juss。授粉。(neem)植物对授粉昆虫生物多样性的毒性和杀虫剂植物的使用近来增长,因为与使用合成杀虫剂相比,其使用的优势是:其中包括:降低人类健康和环境的风险。因此,这项研究旨在通过书目综述,提供有关使用植物印em(Azadirachta Indica)对授粉昆虫的生物多样性产生的常见输入的后果的信息。因此,观察到基于树木的化合物的产品会导致授粉昆虫有害甚至致命作用,包括产卵,喂养,生长以及其他可能导致授粉媒介灭绝的作用。因此,得出结论,印em树的毒性不仅限于人类将昆虫视为城市害虫或农业中存在的昆虫。除了这些昆虫,授粉媒介,所有依赖授粉过程的植物媒介外,使用印em危害。关键字:环境影响,植物杀虫剂。1。介绍
喂养不断增长的世界人口需要更高的农业收入,而农业收入容易受到气候变化的影响(已经感觉到农业的影响)。需要新的解决方案来响应这种需求。在此主题中,提出了一种方法,该方法允许农作物生长,而依赖化学施肥和更大的干旱弹性。据报道,挥发性有机化合物(您)促进植物生长并减轻水胁迫,但结果很少来自实验室长凳。我们提出了将选定的生物活性和根瘤菌的使用,这些生物活性和根瘤菌会产生这些挥发性化合物,并将其掺入藻酸盐微胶囊中。采用这种创新的方法,预计它将减少乡村和温室中化肥的应用,而预计它将提高生产率,这与联合国2030年议程的可持续发展目标相符。
电子邮件:thiago.ortiz@prof.unipar.br摘要可持续农业是一种农业生产系统,旨在平衡粮食生产与保护自然资源,最大程度地降低环境影响并促进土壤健康。 微生物在农业中起着至关重要的作用,直接影响土壤质量,植物营养,因此是农业生产力。 微生物与农业系统之间的这种复杂相互作用是一个恒定的扩展研究领域。 有益微生物的存在有助于土壤聚集体的形成,从而改善其结构和曝气。 这有利于植物的根源发育和有效的营养吸收。 简而言之,微生物在促进可持续农业,促进资源效率,降低对化学输入的依赖并保留农业生态系统的健康方面起着至关重要的作用。 因此,整合有利于土壤中微生物活动的实践对于发展更可持续和弹性的农业系统至关重要。 关键词:土壤,共生,细菌,接种,生产力,环境可持续性。电子邮件:thiago.ortiz@prof.unipar.br摘要可持续农业是一种农业生产系统,旨在平衡粮食生产与保护自然资源,最大程度地降低环境影响并促进土壤健康。微生物在农业中起着至关重要的作用,直接影响土壤质量,植物营养,因此是农业生产力。微生物与农业系统之间的这种复杂相互作用是一个恒定的扩展研究领域。有益微生物的存在有助于土壤聚集体的形成,从而改善其结构和曝气。这有利于植物的根源发育和有效的营养吸收。简而言之,微生物在促进可持续农业,促进资源效率,降低对化学输入的依赖并保留农业生态系统的健康方面起着至关重要的作用。因此,整合有利于土壤中微生物活动的实践对于发展更可持续和弹性的农业系统至关重要。关键词:土壤,共生,细菌,接种,生产力,环境可持续性。
氮固定微生物的应用在植物营养中表现出了益处。 div>这项研究旨在评估氮固定微生物对玉米培养的影响(Zea Mays L.)。 div>在实验中,使用了三个重复的随机完整块设计(DBCA)。 div>应用的处理为:T1 -Paenibacillus polymyxa 2 L Ha -1; T2 -P。polymyxa 3 L ha -1; T3 -P。Polymyxa 4 L Ha -1; T4- pegotobacter Chroococcum 2 L ha -1; T5 -a。 T6 -A。Chrococcum 4 L ha -1; T7 -P。Polymyxa + A. Chroococcum 2 L ha -1; T8 -P。polymyxa + A. Chroococcum 3 L ha -1; T9 -P。Polymyxa + A. Chroococcum 4 L ha -1和T10-对照(无应用)。 div>评估的变量为:植物高度,茎直径和插入蛋白的插入。 div>结果表明,在农作物的播种(DDS)后55天,高度为182.01 cm的玉米植物的良好生长以及使用T9 -P. polymyxa + A. A. A. ChroCocum治疗获得了20.14 mm茎的直径。 div>此外,对于同样的处理,COB的插入也为120 cm。 div>
具体而言,在电动汽车领域,西班牙已经拥有重要的充电基础设施产业价值链,该产业价值链与资本货物和电力电子行业相连,全国制造业贡献率在 70% 至 90% 之间。至于电动汽车制造,尽管其仍占生产的一小部分,但我国在某些领域(例如公共汽车或摩托车)拥有相关的制造生态系统,近年来,一些西班牙公司在该领域得到了发展并呈指数级增长。在乘用车领域,整合仍在继续,目前至少有 5 种车型在生产,另有十几种车型将在未来几年内中标并计划生产,所有这些都将使这些清洁能源汽车在国家车队中的比重迅速增加。在欧洲电池联盟和欧洲电池技术平台欧洲电池联盟(推动价值链和新电池及电池组工厂的启动)的 300 个实体中,西班牙占了 20 个。第一
i。关于合成生物学与生物多样性之间关系的观点。 div>在会议上产生的信息是墨西哥在合成生物学和生物技术方面最大的机会领域,这是通过现代技术的使用和开发来研究和使用我们的生物多样性。 div>墨西哥的合成生物学必须基于国家生物多样性的可持续使用和保护。 div>合成生物学的最终产物主要是以下三个:1)通过化学合成之前获得BS之前获得的商业活性物质或原理,或者是从植物提取物(例如植物提取物或微生物的种植)中分离出来的。 div>现在,通过合成生物学获得了这些相同的产品,通常包括与合成遗传回路的修改微生物的限制使用。 div>所得产品的使用和商业化已经受到与政府和卫生部门相关的COFEPRI或其他监管实例的调节。 div>微生物在培养和消毒时,并不代表生物多样性的风险。 div>2)当产品本身是具有合成生物学的改良生物时,其目的是将其释放到环境中,这可能是由于植物所需的植物,例如植物和微藻。 div>用BS原理建立生物体时,您可以设计这些生物体以最大程度地降低遗传当前改性生物的风险。 div>这可以通过以顺式贡元的方式进行修饰(与生物体的相同基因的工程而无需插入外源遗传物质),或者与其自然来源相比,插入的基因或序列可以修改并与接收体的遗传序列相比。 div>尽管环境风险必须低于目前的修改生物,但建议通过考虑BS修饰的身体是否是例如本地物种来分析其调节。 div>这些生物可以通过常规的基因工程过程获得3)完全从整个基因组中重新设计的生物。 div>这种情况被期望为将来会发生的事情,最初仅将其包括在科学目的的单细胞生物中,并在受限的环境中培养。 div>在这种情况下,建议研究人员和机构宣布其项目和产品的开放性和透明度。 div>风险委员会可能正在监视这些类型的项目以分析
几乎是一样的。这可能是农业食品行业和智能数字化,通过提高质量、保证和关注环境和领土平衡为生产者和消费者创造价值。这可能是新氢能产业的任何版本,从蓝色到绿色。它可能是健康和保健领域。这些可能是基于技术的领域,例如植物基因组学、计算生物学、自然语言处理和材料科学。西班牙在这些领域都拥有一系列不可忽视的竞争优势,以及必要的知识。它们有一个共同点,任何经济学家都会同意:它们都是具有巨大价值创造能力的生产性行业。逻辑再简单不过了:它们能够维持创新、竞争力、生产力的良性循环,而且如果合理分配价值创造的剩余,还能实现高度的社会公平和新的资源获取,以保持循环的活跃。
吨每公顷(Faostat,2022),番茄是全球领先的园艺作物,而数百万人饮食的基本成分。 div>除了其经济和营养重要性外,番茄还被认为是肉体果实中的典型人体(Li等人,2018年),它是生物学研究的古老石头和豆豆菌作物的遗传改善,例如马铃薯,胡椒或茄子。 div>番茄的驯化和遗传改善可以追溯到拉丁美洲的古代哥伦比亚文明。 div>第一批农民利用自然界自发突变产生的遗传变异性,在这种作物中选择并包括理想的特征,更富有浓郁的植物,更好的植物,尺寸更好,美味的水果生产商。 div>随着西班牙人到达美国的到来以及随后在世界各地的西红柿的分散,适应耕种的过程以及基于选择和传播的基于选择和传播的遗传改善的过程就开始了,而不是在选择最好的植物中。 div>在20世纪初,遗传学和原理的诞生 -
该行业的创新:全国蔬菜获得协会(Anove)的蔬菜获取者ElenaSáenz的贡献强调了开发新种子的公司的作用。 div>“对农作物生产力产生最大影响的因素是植物的改善。在塞尔达研究所编写的报告中,据指出,蔬菜改善本身是造成50%以上农作物生产率的增长。 div>因此,旨在获得新植物品种的研究具有战略性,即面对农业生产带来的挑战。 div>有必要部署所有提供的机会特别感兴趣的领域是开发新的品种,这使得越来越抗性作物。 div>“在植物改善领域,新品种的发展从获得过程开始,与抗旱性有关的目标以及更好地利用营养物质,使植物可以更好地抵抗植物的气候逆境。的改编
提交日期:2024 年 7 月 5 日; 2024 年 11 月 23 日接受;发布日期:2024 年 12 月 21 日。摘要:磷和钾是植物生命周期中必需的化学元素,被认为是农业发展的限制因素。每年,大量商业肥料被施用在田间以满足植物生产的需求,但这些投入的低效率会对环境产生负面影响。当施入土壤后,这些元素很快就会通过化学反应固定在粘土矿物中,从而难以被植物根部吸收。作为大量使用化学投入的替代方案,许多研究正致力于利用栖息在根际并具有使不溶性常量营养素可被生物利用的能力的细菌。因此,本研究的目的是对磷酸盐和钾溶解细菌、其作用机制及其作为生物接种剂的用途进行文献综述。根据本研究的提议,通过 Web of Science、SciELO、Google Scholar、Periódico Capes 和 Scopus 等数据库选出科学文章。本综述介绍了根瘤菌的用途和多功能性的相关结果,表明它们是一种具有多样化生态应用的低成本策略,可促进农业的可持续性。关键词:常量营养素;微生物;生物利用度。
