作者电子邮件地址:shaheensaalina@gmail.com(Salina Shaheen Parul); reazahmmed147@gmail.com(雷兹·艾哈迈德); s1710325103@ru.ac.bd(Md. Taohid Hasan); ariful222222@gmail.com(Ariful Islam)monirbio31@gmail.com(M.Manirujjaman),motiar.rahman28@gmail.com(Motiar Rahman),wasim.bc36@yahoo.com(Md. Wasim Bari); shakil13922@yahoo.com(Md. Shakil Ahmed),sohel_bio@ru.ac.bd(Md. Sohel Hasan)。通讯作者:电子邮件:maislam14@ru.ac.bd,拉杰沙希大学生物化学与分子生物学系,拉杰沙希-6205,孟加拉国。
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要 - 您可能已经听说大脑是塑料的。您知道大脑不是由塑料制成的,大脑可塑性也称为神经可塑性。大脑可塑性是一个物理过程。灰质实际上可以缩小或增厚神经连接可以锻造,精制或削弱和切断。大脑可塑性是指大脑在一生中改变的能力。大脑具有通过在脑细胞(神经元)之间形成新的连接来重组自身的惊人能力。很长一段时间以来,人们相信,随着我们的年龄,大脑的连接变得固定。研究表明,实际上大脑永远不会通过学习来改变。可塑性是大脑随着学习而改变的能力。与学习相关的变化主要发生在神经元之间的连接水平上。可以形成新的连接,现有突触的内部结构可能会改变,但也可以根据所收到的外部刺激和前面存在的连接而部分地进行内部拓扑。我们发现这个想法也可以应用于简单的人工神经网络。在本文中,我们提出了一种新方法,以动态地适应人工神经网络的拓扑,仅使用学习集中的信息。以及在本文中,我们提出的算法已经在结果上相对于多层感知器(MLP)问题进行了测试。索引术语 - 学习,神经可塑性,多层感知(MLP),人工神经网络(ANN),神经元,大脑,突触。
1. 伊朗阿瓦士 Jundishapur 医科大学健康研究所地中海贫血和血红蛋白病研究中心 2. 伊朗阿瓦士 Jundishapur 医科大学学生研究委员会 3. 伊朗阿瓦士 Jundishapur 医科大学公共卫生学院生物统计学和流行病学系 *通讯作者:Kaveh Jaseb 博士,伊朗阿瓦士 Jundishapur 医科大学健康研究所地中海贫血和血红蛋白病研究中心。电子邮件:kavehjaseb1400@gmail.com。ORCID ID:0000-0002-3216-9113。收到日期:2024 年 7 月 31 日 接受日期:2024 年 11 月 6 日 摘要背景:钙卫蛋白被认为是全身炎症的生物标志物,尤其是在自身免疫性疾病中。炎症是一个与恶性进展相关的过程,而钙卫蛋白是一些血液系统恶性肿瘤的潜在预后生物标志物。我们的初步研究旨在评估血浆钙卫蛋白水平作为儿童血液肿瘤复发/难治期有希望的生物标志物。材料和方法:这项初步研究是一项病例对照研究。研究共纳入 168 人。分析对象为伊朗阿瓦士沙法医院转诊的 73 名被诊断为急性白血病的儿科患者和 60 名患有实体瘤癌症的儿科患者。根据疾病的三个阶段将患者细分,包括治疗期、复发/难治期和缓解期。此外,35 名健康儿童被视为对照组。在征得所有参与者的同意后,将他们的血液样本采集到乙二胺四乙酸 (EDTA) 管中,通过酶联免疫吸附试验 (ELISA) 法测量血浆钙卫蛋白水平。使用 SPSS26 软件分析数据。使用 Kruskall-Wallis、Bonferroni Post hoc 和双变量相关性检验,双侧 p 值 < 0.05 为显著性差异。结果:急性白血病不同阶段的血浆钙卫蛋白水平没有统计学上的显著差异(P = 0.099);然而,研究组的平均水平高于健康对照组。与对照组相比,在实体瘤的不同阶段也观察到平均钙卫蛋白水平的增加。此外,与对照组相比,治疗组和缓解组之间存在显著差异(分别为 p = 0.011 和 p = 0.016)。结论:部分儿童血液肿瘤恶性肿瘤不同阶段血浆钙卫蛋白平均水平升高,但不能作为复发/难治期的特异性生物标志物。关键词:生物标志物,白血病,S100A8蛋白,S100A9蛋白,S100蛋白简介钙卫蛋白是S100蛋白家族中的一种报警素,在炎症反应中起关键作用,并参与各种细胞过程,特别是免疫调节 (1)。钙卫蛋白由两个亚基组成,即 S100A8 和 S100A9,存在于髓系细胞的细胞质中,尤其是中性粒细胞、单核细胞和巨噬细胞 (2)。
半个世纪以来,普通实验室啮齿动物的桶状皮层一直是研究地形图,神经图案和可塑性的形成,在发育和成熟度中的形成非常有用。我们介绍了关于桶的发现方式的历史观点,以及此后如何成为发展性神经科学家的主力,并研究了大脑可塑性和脑电路的活动依赖性建模。对这种感觉系统的特殊值得注意的是一种细胞模式,它是由源自鼻须围绕的感觉受体得出的信号引起的,并以中央传播到脑干(桶形),丘脑(枪管)(枪管)(枪管)和新皮层(桶)。出生后不久对感觉受体的损伤会导致系统的所有级别可预测的模式改变。小鼠遗传学增加了我们对枪管的构造方式的理解,并揭示了将轴突生长和细胞规范的分子程序的相互作用以及活性依赖性机制。对这种感觉系统作为一种神经生物学模型存在着不断提高的兴趣,该模型在形态学和生理水平上都研究了体体,模式和可塑性的发展。本文是纪念神经科学学会50周年的一组文章的一部分。
在我们的高级实验室中,我们对经过处理的纸进行了全面的分析测试套件。傅立叶变换红外光谱(FTIR)证实了新的酯键的形成,其明显的吸收峰出现在1730 cm⁻见附近,表明成功嫁接。差异扫描量热法(DSC)和热重分析(TGA)证实,该纸张在超过230°C的温度下保持结构完整性,这是包装暴露于各种气候和分布条件的基本参数。动态机械分析(DMA)表明,该论文在广泛的温度范围内保留了稳定的粘弹性模量,从而确保了一致的机械性能。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)进行高分辨率成像显示出均匀的,无缺陷的表面形态,证明了我们整合过程的功效。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)进行高分辨率成像显示出均匀的,无缺陷的表面形态,证明了我们整合过程的功效。
摘要:SnO 2 基钠离子电池在钠化/脱钠过程中通常会出现容量衰减较快的问题,这是由于Sn的聚集和裂解以及Na 2 O的不可逆形成造成的。针对这一问题,我们设计了一种基于微波等离子体工艺制备的三元SnO 2 @Sn核壳结构,修饰于氮掺杂石墨烯气凝胶上(SnO 2 @Sn/NGA)。转化成的Na 2 O可以防止Sn的团聚,从而在循环过程中稳定结构。Na 2 O与Sn之间的紧密接触确保了Na+离子向Sn核的扩散,并可逆地转化为Sn SnO 2 。此外,等离子体对NGA的脱氧作用提高了其石墨化程度和电导率,从而大大提高了电极的倍率性能。结果,SnO 2 @Sn/NGA负极在100 mA g -1 时表现出448.5 mAh g -1 的高首次放电容量。重要的是,这种独特的纳米混合电极设计可以扩展到锂和钠离子电池的先进阳极材料。
摘要背景:人类疟原虫恶性疟原虫中异染色质的维持、调节和动态变化因其在互斥毒力基因表达和关键发育调节因子沉默中的调节作用而受到越来越多的关注。染色质免疫沉淀后测序 (ChIP-seq) 等全基因组分析的出现有助于了解染色质组成;然而,即使在模型生物中,ChIP-seq 实验也容易受到由潜在染色质结构引起的内在实验偏差的影响。方法:我们进行了一项对照 ChIP-seq 实验,重新分析了之前发表的 ChIP-seq 数据集,并比较了不同的分析方法,以表征恶性疟原虫全基因组分析的偏差。结果:我们发现用于 ChIP-seq 标准化的输入对照样本中的异染色质区域在整个恶性疟原虫基因组的测序覆盖率方面系统性地代表性不足。这种代表性不足,加上非特异性或低效的免疫沉淀,可能导致在这些区域识别出假富集和峰值。我们观察到,在特定和有效的 ChIP-seq 实验中,背景水平也会出现这种偏差。我们进一步报告了不同的读取映射方法如何扭曲高度相似的亚端粒区域和毒力基因家族中的测序覆盖率。为了改善这些问题,我们讨论了可用于表征真正的染色质相关蛋白的正交方法。结论:我们的结果强调了染色质结构对寄生虫全基因组分析的影响以及谨慎的必要性
重组腺相关病毒(RAAV)是用于传递遗传信息的最深入研究和最广泛使用的载体之一。但是,将遗传货物向受体细胞有效地转移需要高矢量剂量。质粒DNA(pDNA)是用于制造Raav的关键原料。可以生产的病毒滴度取决于辅助,包装和转移质粒转染的细胞数量以及其生物学活性。因此,对优化质粒的高级疗法需求的开发和应用表现出较高的生物学活性,可以以高质量和数量生产。这些原材料的可用性和负担能力反过来要求高性能生产过程,这些过程的特征是高产品滴度,质粒DNA纯度和可伸缩性。这些特征受到靶质粒的特定序列的影响,尤其是那些对RAAV功能至关重要的序列。Wacker开发了一个专有的饲料批次工艺,该过程最佳地支持了质膜菌株的生长,并允许最佳的质粒复制。此过程允许在高特异性滴度和高纯度下进行可扩展的质粒DNA(包括关键的RAAV制造原材料)的可扩展生产和隔离。使用此过程,我们开发了特定的DNA序列,从而进一步提高了靶质粒的生产率,从而降低了制造成本。并行,我们筛选替代质粒结构,以提高其转染效率和包装细胞系中的生物学活性。结合了由此产生的技术,我们开发了专有质粒,可以进一步促进RAAV制造。具有其生产力,灵活性和可扩展性,Plasmitec®制造平台提供了高质量且负担得起的原材料,因此是开发和应用高级疗法的宝贵促进者。