图 1. 质粒 QC 工作流程说明。从过夜细菌培养物开始,可使用 KingFisher 系统纯化 DNA。为了精确测定数量,在进行后续步骤之前,通过限制性消化将纯化的 DNA 线性化。对于无液滴数字 PCR (dPCR) 定量,将线性化的 DNA 与 Applied Biosystems ™ TaqMan ™ 检测试剂混合,装入 Applied Biosystems ™ QuantStudio ™ Absolute Q ™ MAP16 板中,并在 QuantStudio Absolute Q 数字 PCR 系统上运行。为了验证质粒序列,使用 Applied Biosystems ™ BigDye ™ Terminator 循环测序试剂盒对线性化的 DNA 进行循环测序。然后在 CE 和分析之前使用 Applied Biosystems ™ BigDye XTerminator ™ 纯化试剂盒清理反应物。或者,使用 Applied Biosystems ™ BigDye ™ 直接循环测序试剂盒对 DNA 进行扩增和测序。在 CE 和分析之前,使用 BigDye XTerminator 纯化试剂盒清理这些反应。
双切口酶质粒被视为“许可产品”,应根据 www.scbt.com/limitedlicense 上规定的有限许可使用。购买本产品即向买方转让不可转让的权利,买方有权将所购买的产品数量以及所有复制品和衍生物仅用于买方在其实验室进行的研究目的(无论买方是学术实体还是营利实体)。买方不得向第三方出售或以其他方式转让 (a) 本产品 (b) 其组件或 (c) 使用本产品或其组件制成的材料,或以其他方式将本产品或其组件或使用本产品或其组件制成的材料用于商业目的。
此过程描述了如何用各种限制性核酸内切酶消化纯化的质粒DNA。使用各种缓冲液和盐条件,将质粒DNA切成各种长度DNA片。然后,可以使用E-Gel功率SNAP电泳和SAP-23132 Chemidoc MP Imaging Imaging Systems使用E-Gel Power Snap Extrophoresis和SP-23132 Chemidoc Imaging Systems使用E-Gel Power Snap Systems和SEOP-23132 ChemIdoc Imaging Systems,并具有来自Bio-Rad的Image Lab touch软件。限制性核酸内切酶识别短的DNA序列,然后在识别序列内或附近的特定位点上裂解双链DNA。限制性核酸内切酶将DNA裂解为离散片段是分子生物学中最基本的过程之一。基本协议描述了如何为任何酶和缓冲液条件切割DNA。这些包括用一个以上的内切酶消化给定的DNA样品,并用相同的内切酶消化多个DNA样品。
NucleoMag ® 质粒程序利用改良的碱性裂解方案,并在适当的缓冲条件下将核酸可逆地吸附到顺磁珠上。沉淀的细菌在缓冲液 A1 中重新悬浮。通过裂解缓冲液 A2 从细胞中释放质粒 DNA,随后使用缓冲液 S3 中和并沉淀裂解物。粗裂解物可以通过离心或使用 NucleoMag ® 清除珠(专门用于裂解物清除的顺磁珠)来清除。为了将核酸与顺磁珠结合,将结合缓冲液 PAB 和 NucleoMag ® M-Beads 添加到清除的裂解物中。磁分离后,通过专利解毒缓冲液 ERB 去除内毒素和蛋白质。使用洗涤缓冲液 AQ 和风干去除其他污染物(如盐或残留乙醇)。纯质粒 DNA 用低盐洗脱缓冲液或水洗脱,可用于任何常见的下游应用,包括转染(仅供研究使用)。NucleoMag ® 质粒试剂盒专为在自动磁棒系统上使用而设计。
t eChniquers i n M Olecular b Iology - 用于P LASMID DNA I求解DNA分离的方法:分子生物学技术在复杂基因组分析中的应用取决于准备纯质粒DNA的能力。大多数质粒DNA隔离技术有两种口味,简单 - 低质量的DNA制剂,更复杂,耗时但高质量的DNA制剂。对于许多DNA操作,例如限制酶分析,亚克隆和琼脂糖凝胶电泳,简单的方法就足够了。大多数DNA测序,PCR操作,转换和其他技术都需要高质量的制剂。大多数方法都以大量细菌细胞开头,这些细菌细胞包含选择的质粒并离心至颗粒。然后,细胞在基本条件下通过洗涤剂钠硫酸盐(SDS)的混合物裂解,或添加蛋白酶(溶菌酶)以削弱和破坏宿主细胞壁。这两种方法的结果都导致紧凑型超螺旋质粒DNA分子释放到溶液中。下一个问题是将RNA,基因组DNA和其他细胞成分与细胞分开。如何完成此操作取决于所使用的方法。碱性裂解制剂是隔离少量质粒DNA的最常用方法,通常称为小型质子。此方法将SDS用作弱洗涤剂,以在NaOH存在的情况下使细胞变性,该清洁剂可将细胞壁和其他细胞分子水解起来。高pH值通过添加乙酸钾进行中和。这将质粒DNA和RNA留在溶液中。钾对样品有额外的影响。钾离子与SD相互作用,使其成为不溶性的洗涤剂。SD会很容易沉淀,并且可以通过离心分离。这样做的不溶性SDS会捕获较大的基因组DNA并将其从上清液中清除。通常通过添加RNASEA消化去除RNA。这仅留下溶液中的蛋白质,碳水化合物和RNA核苷单体。原发性醇(例如乙醇或丙醇)用于沉淀DNA。这是通过对水的重新排序来实现的,使DNA聚集体并变得不溶性。结果是一种纯净的DNA颗粒,可以重悬于温和缓冲的溶液或水中。建议使用大量培养物中煮沸的微型REIPREP来制备少量的质粒DNA。虽然此方法非常快,但产生的DNA质量低于碱性裂解小型培训的质量。在碱性裂解小型方法中,溶菌酶用于水解负责使细菌细胞壁具有其强度的广泛交联蛋白。然后将细胞煮沸以进一步使蛋白质结染并破坏细胞壁。然后用酒精沉淀质粒DNA。这两种方法都将仅产生几µg质粒DNA。对于纯度较高的较大数量,需要许多其他步骤。通过在非常高的重力力下在氯化丘密度梯度中离心,根据其密度分离其密度。氯化剖腹梯度产生的高质量质粒DNA不含大多数污染物,但使用溴化乙锭来识别DNA(潜在的诱变剂),并且需要长时间的超级离心运行以建立密度梯度。该方法是通过使用碱性裂解方法裂解细胞的,并在350,000 x g下离心14小时。首先,将CSCL梯度在小管中制成,并用溴化乙锭添加DNA。在旋转时,DNA将向下迁移,直到达到与质粒相同的CSCL的密度。因此,较大的DNA将与紧凑的质粒DNA分离。用紫外线可视化质粒带,用针切除,然后重复该过程。您可以看到,这是一种非常复杂且乏味的方法,用于隔离DNA,通常不经常在柱分离的出现中使用。现在存在一种更流行的方法,它利用了质粒DNA的物理特性和碱性裂解方法中发现的污染物的差异。核酸是负电荷的,因此可以使用阴离子交换
H302 + H332如果吞咽或吸入有害。H315引起皮肤刺激。H319引起严重的眼睛刺激。H334如果吸入,可能会导致过敏或哮喘症状或呼吸困难。H317可能引起过敏性皮肤反应。P280戴防护手套/防护服/眼部保护/面部保护。 p284 [如果通风不足,呼吸保护。 P301 + P312如果吞咽:如果您感到不适,请致电毒药中心/医生。 p304 + p340如果吸入:将人移至新鲜空气并保持呼吸舒适。 P305 + P351 + P338如果在眼睛中:用水谨慎冲洗几分钟。 删除隐形眼镜,如果有的话,易于执行。 继续冲洗。 p333 + p313如果出现皮肤刺激或皮疹:获取医疗建议/注意。P280戴防护手套/防护服/眼部保护/面部保护。p284 [如果通风不足,呼吸保护。P301 + P312如果吞咽:如果您感到不适,请致电毒药中心/医生。p304 + p340如果吸入:将人移至新鲜空气并保持呼吸舒适。P305 + P351 + P338如果在眼睛中:用水谨慎冲洗几分钟。删除隐形眼镜,如果有的话,易于执行。继续冲洗。p333 + p313如果出现皮肤刺激或皮疹:获取医疗建议/注意。
定期间隔间隔的短篇小学重复序列(CRISPR)和CRISPR相关蛋白(CAS9)系统是Archea和细菌用于降解的一种自适应免疫反应防御机制。该机制可以用于其他功能,包括用于哺乳动物系统的基因组工程,例如基因敲除(KO)(1,2)(1,2)和基因激活(3-6)。cRISPR激活质粒产物通过利用D10A和N863A停用CAS9(DCAS9)核酸酶与VP64 acti vation域融合的核酸酶,与SGRNA(MS2)(MS2),目标特异性SGRNA构成SGRNA工程2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HS 2-HSFF F.Sff FORINAIN 。 这种协同激活介质(SAM)转录激活系统提供了一个强大的系统,以最大程度地激活内源基因表达(6)。。这种协同激活介质(SAM)转录激活系统提供了一个强大的系统,以最大程度地激活内源基因表达(6)。
重组腺相关病毒(RAAV)是用于传递遗传信息的最深入研究和最广泛使用的载体之一。但是,将遗传货物向受体细胞有效地转移需要高矢量剂量。质粒DNA(pDNA)是用于制造Raav的关键原料。可以生产的病毒滴度取决于辅助,包装和转移质粒转染的细胞数量以及其生物学活性。因此,对优化质粒的高级疗法需求的开发和应用表现出较高的生物学活性,可以以高质量和数量生产。这些原材料的可用性和负担能力反过来要求高性能生产过程,这些过程的特征是高产品滴度,质粒DNA纯度和可伸缩性。这些特征受到靶质粒的特定序列的影响,尤其是那些对RAAV功能至关重要的序列。Wacker开发了一个专有的饲料批次工艺,该过程最佳地支持了质膜菌株的生长,并允许最佳的质粒复制。此过程允许在高特异性滴度和高纯度下进行可扩展的质粒DNA(包括关键的RAAV制造原材料)的可扩展生产和隔离。使用此过程,我们开发了特定的DNA序列,从而进一步提高了靶质粒的生产率,从而降低了制造成本。并行,我们筛选替代质粒结构,以提高其转染效率和包装细胞系中的生物学活性。结合了由此产生的技术,我们开发了专有质粒,可以进一步促进RAAV制造。具有其生产力,灵活性和可扩展性,Plasmitec®制造平台提供了高质量且负担得起的原材料,因此是开发和应用高级疗法的宝贵促进者。
质粒是一种自主复制的染色体外环状 DNA 分子,不同于正常的染色体 DNA,在非选择性条件下对细胞存活并非必需。细菌质粒是双链 DNA 的闭合环状分子,大小从 1 到 >200 kb 不等。它们存在于多种细菌物种中,在这些细菌物种中,它们表现为独立于细菌染色体遗传和复制的额外遗传单位。质粒通常含有编码酶的基因,这些酶在某些情况下对宿主细胞有利。编码的酶可能与抗生素耐药性、对环境中的毒素(例如复杂的有机化合物)的耐药性或细菌自身产生的毒素有关。质粒一词最早由美国分子生物学家 Joshua Lederberg 于 1952 年提出。同年,J. Lederberg 回顾了细胞遗传方面的文献,并建议将所有染色体外的遗传决定因素称为“质粒”。与细菌染色体相比,质粒的尺寸非常小,较老的质粒仅为大肠杆菌染色体尺寸的 0.8%,尽管存在其他比这个尺寸小的质粒,但 Pl. DNA 和 Ch. DNA 非常相似,环状结构为一个二进制字符串,但在细胞内,与染色体不同,质粒牢固地缠绕在自身周围,形成所谓的超卷曲质粒或共价闭合环状 (CCC)。如果已知质粒的表型标记(例如抗生素抗性),建议在选择压力下培养细胞以避免质粒丢失。
成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas9) 系统是一种适应性免疫反应防御机制,古细菌和细菌利用该机制来降解外来遗传物质。该机制可以重新用于其他功能,包括哺乳动物系统的基因组工程,例如基因敲除 (KO) (1,2) 和基因激活 (3-6)。CRISPR 激活质粒产品利用与 VP64 激活域融合的 D10A 和 N863A 失活 Cas9 (dCas9) 核酸酶与 sgRNA (MS2) 结合,从而实现特定基因的识别和上调,sgRNA (MS2) 是一种靶向特异性 sgRNA,经过设计可结合 MS2-P65-HSF1 融合蛋白 (6)。这种协同激活介质 (SAM) 转录激活系统提供了一个强大的系统,可最大限度地激活内源性基因表达 (6)。