Effix平台是Wuxi Biologics的更广泛集成技术平台的组成部分,该平台基于微生物表达系统。这个全面的平台涵盖了早期研究,CMC开发和GMP制造,在下一代疗法领域的各种方式中,更快,更有效,更具成本效益的制造过程。
幽门螺杆菌的惊人特征之一是临床分离株之间广泛的遗传多样性。这种多样性归因于突变率升高,DNA修复受损,DNA转移和频繁重组事件。质粒也已在幽门螺杆菌中鉴定出来,但尚不清楚连接是否可以导致临床分离株之间的DNA转移。检查幽门螺杆菌是否具有共轭质粒转移的固有能力,将穿梭载体引入了幽门螺杆菌中,其中含有含有共轭Incp质粒质粒RP4的原始序列,但没有动员(MOB)基因。表明,这些载体可以稳定复制并在幽门螺杆菌菌株中动员。还证明,幽门螺杆菌染色体上携带的trag和弛豫酶(RLX)同源物对于质粒转移至关重要。引物扩展研究和诱变进一步证实了幽门螺杆菌中的弛豫酶同源物RLX1编码能够在RP4 ORIT上作用的功能酶。此外,这项研究的发现表明,TRAG和RLX1独立于先前描述的IV型分泌系统,包括由CAG致病性岛和梳子转化设备编码的,在介导H. Pylori菌株之间的结合质粒DNA转移中。
虽然单克隆抗体(mAb)是一类重要的药品类别,但成本,复杂性,尤其是递送仍然存在重大问题:克服经常注入抗体的概念是一个值得的目标。一种有吸引力的方法是将非整合DNA直接传递给肌肉组织,使患者充当自己所谓的“蛋白质工厂”。使用脂质纳米颗粒(LNP)和病毒载体进行了这种概念的演示,但是这些传递方法面临着重大挑战,包括肝外交付不良,货物兼容性,安全性,可重复性和成本。聚合物纳米颗粒(PNP)提供了解决这些问题的解决方案,但是面临着自己的挑战,例如大量可能的聚合物结构和多体式配方条件。然而,机器学习,材料信息学和高通量化学合成技术的进步为解决这些挑战提供了有效探索聚合物设计空间的基础。我们的Sayer TM平台利用了质粒DNA(PDNA)的大量计算数据集 - 聚合物相互作用来促进靶向剂的发现和通过深度学习的发现,并推动对各种靶向组织的新型PNP的发现。在这项工作中,我们证明了设计PNP的能力,可以为PGT121提供PDNA编码,PGT121是一种广泛中和的抗HIV抗体,该抗体靶向HIV-1 Invelope糖蛋白上的V3 GlyCan依赖性表位位点。Sayer设计的聚合物与PGT121质粒形成小稳定的PNP。此外,我们表明我们可以通过延长来提高抗体水平和耐用性。与其他状态的DNA降低车辆相比,转染后1天,在转染后1天表现出强血清PGT121蛋白水平。更重要的是,纳米PNP的肌内递送启用了大于1.0 µg/ml峰蛋白表达水平,注射后> 56天,有意义的,耐用的表达水平。在肌肉内输送PNP时,可以看到较低剂量和较低的N/P比的一般趋势。这些参数与聚合物结构分开,提供了不同的机制,可以使用机器学习技术优化体内递送性能。可以将概念扩展到其他抗体,蛋白质或酶的连续产生,这表明PDNA通过PNPS作为治疗方式具有广泛的适用性。最后,我们强调,通过安全有效的PNP在体内提供DNA编码的分泌蛋白的策略可能适用于广泛的其他疾病方式。
摘要:随着成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 (Cas) 系统的出现,治疗性基因编辑变得越来越可行。然而,成功实施基于 CRISPR/Cas9 的疗法需要安全有效地在体内递送 CRISPR 成分,这仍然具有挑战性。本研究介绍了使用电喷雾技术成功制备、优化和表征装载两个 CRISPR 质粒的海藻酸盐纳米粒子 (ALG NPs)。该递送系统的目的是编辑另一个质粒(绿色荧光蛋白 (GFP))中的靶基因。评估了配方和工艺变量的影响。CRISPR ALG NPs 的平均尺寸和电位分别为 228 nm 和 − 4.42 mV。在保持有效载荷完整性的同时实现了超过 99.0% 的包封率。通过衰减全反射傅立叶变换红外光谱法确认了 ALG NPs 中 CRISPR 质粒的存在。测试表明,纳米粒子具有细胞相容性,并成功地将 Cas9 转基因引入 HepG2 细胞中。纳米粒子转染的 HepG2 能够通过在 GFP 基因中引入双链断裂 (DSB) 来编辑其目标质粒,这表明包裹在海藻酸盐纳米粒子中的 CRISPR 质粒具有生物活性。这表明该方法适用于体外或离体生物医学应用。对这些纳米粒子的未来研究可能会产生适合体内递送 CRISPR / Cas9 系统的纳米载体。
在本应用注释中,我们展示了如何进一步用于净化质粒DNA和PCR产物,这是体外转录的mRNA生成工作流程的第一步。为此,我们收集了一种大型细菌培养物,该培养物包含质粒DNA,含有多功能相关的转录物靶基因lin28a,该基因在ShakerInnova®S44I中生长。转子R9A2用于细菌3 L(2 x 1.5 L)的细菌培养物。使用转子R15A的组合形成了从一个1.5 L瓶(1500pp瓶)获得的整个细菌颗粒的DNA纯化,该组合可容纳高达10 x 50 ml和10 x 15 ml,以及可容纳最多可容纳30 x 2 ml的转子R22a4。由于其高容量,这种组合允许旋转数量减少。最后,我们表明高质量的转录过程可以通过体外转录(IVT)5,6来促进mRNA。
这些 DNA 片段很小,很可能通过整合并产生永久性突变(就像霰弹枪子弹击中洗衣板一样)来损害人类基因组。重要的是观察从接种疫苗的人的不同身体组织中提取的 DNA,以查看是否存在这种情况,以及它是否会立即引起任何不良事件,或者是否存在未来的癌症风险。我们应该对几百人进行测序,看看这种 DNA 是否进入了人类基因组。
提取核酸是任何分子生物学研究的起点,因此被认为是一个关键过程。质粒被认为是原核生物进化的主要驱动力,因为它们可以在人群之间迁移,使其成为侧向DNA转移和微生物战争的有效药物。质粒的重要性超出了微生物的进化,因为它们被广泛用作基础研究(例如随机诱变)的遗传工程载体,以及在生物技术学(例如胰岛素生产),合成生物学,农业,农业,农业工程(例如,Bioss的遗传工程)和医学(E. g.g.,g。由于质质剂DNA(pDNA)的有效生产方法的需求已响应于基因治疗和疫苗的快速进步,因为与病毒载体相关的有利安全问题,因此pDNA在基因治疗和疫苗中的快速进步。Himedia的Hipura®用于质粒DNA纯化的预填充墨盒(MIDIPREP)提供了高产量的质粒DNA和无麻烦的自动化溶液,以提取。
图 3. 内毒素水平比较。根据制造商说明 (Lonza),使用 Limulus Amebocyte Lysate (LAL) 测试测量使用 QIAGEN 的 EndoFree Plasmid Kit 和 QIAGEN Plasmid Plus Kit 以及 Zymo 的 ZymoPureII Endo-Zero Plasmid Kit 制备的质粒 DNA 样本中的内毒素水平。对于每个试剂盒,对 2 个样本进行 1:100 稀释,重复三次测试。测试的标准曲线范围在 0.005 EU/ml 和 50 EU/ml 之间。EndoFree Plasmid Plus 试剂盒产生的质粒 DNA 不含任何可检测的内毒素,而 Plasmid Plus 试剂盒提供的质粒 DNA 中内毒素含量显著降低。相比之下,ZymoPureII 产生的质粒 DNA 含有大量内毒素。通过琼脂糖凝胶电泳评估的两个试剂盒的质粒 DNA 的产量和质量相当(未显示数据)。
使用自私遗传元件(SGE)抽象的拮抗剂进化可以推动宿主抗性的进化。在这里,我们研究了宿主抑制2微米(2 m)质粒,质质寄生虫,它们与萌芽的酵母菌共同发展。我们开发了SCAMPR(用于测量质粒保留的单细胞测定),以测量活细胞中拷贝数异质性和2 m质粒损失。我们确定了缺乏内源性2 M质粒并可重复抑制有丝分裂质粒稳定性的三种酿酒酵母菌株。着眼于Y9 Ragi菌株,我们确定质粒限制是可遗传的和占主导地位的。使用大量分离分析,我们确定了一个高置信度定量特质基因座(QTL),其单个变体MMS21与增加2 m的不稳定性相关。MMS21编码SMC5/6复合物的SUMO E3连接酶和一个重要组成部分,涉及姐妹染色单体内聚,染色体分离和DNA修复。我们的分析利用自然变异来揭示出一种新颖的手段,萌芽的酵母可以克服非常成功的遗传寄生虫。
1 Duchossois家庭研究所,芝加哥大学,芝加哥大学,伊利诺伊州芝加哥2号,美国2芝加哥大学微生物学系,芝加哥大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥市3,美国3号传染病司,美国马萨诸塞州波士顿,马萨诸塞州波士顿,美国4号,美国4号,美国,美国马萨诸塞州波士顿,马萨诸塞州,美国马萨诸塞州,美国5个动物资源史上,po puliestion,pulionse sci ceciences of Microbiology Sciences of Microbiology Science芝加哥,芝加哥,伊利诺伊州芝加哥,美国7个微生物学和环境毒理学系,加利福尼亚大学,加利福尼亚州圣克鲁斯,加利福尼亚州,美国8研究所,生物学研究所,莱顿大学,莱顿大学,莱顿9霍华德·休斯医学研究所,荷兰,美国雪佛兰大厦美国加利福尼亚州斯坦福大学斯坦福大学医学院微生物学和免疫学1 Duchossois家庭研究所,芝加哥大学,芝加哥大学,伊利诺伊州芝加哥2号,美国2芝加哥大学微生物学系,芝加哥大学,芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥市3,美国3号传染病司,美国马萨诸塞州波士顿,马萨诸塞州波士顿,美国4号,美国4号,美国,美国马萨诸塞州波士顿,马萨诸塞州,美国马萨诸塞州,美国5个动物资源史上,po puliestion,pulionse sci ceciences of Microbiology Sciences of Microbiology Science芝加哥,芝加哥,伊利诺伊州芝加哥,美国7个微生物学和环境毒理学系,加利福尼亚大学,加利福尼亚州圣克鲁斯,加利福尼亚州,美国8研究所,生物学研究所,莱顿大学,莱顿大学,莱顿9霍华德·休斯医学研究所,荷兰,美国雪佛兰大厦美国加利福尼亚州斯坦福大学斯坦福大学医学院微生物学和免疫学