摘要 疟疾在全球造成 200 多万人死亡。为了拉平这条曲线,需要开发新的高效抗恶性疟原虫药物。主要挑战包括缺乏适合抗恶性疟原虫检测的动物模型、对一线药物的耐药性、缺乏疫苗以及疟原虫复杂的生命周期。令人高兴的是,由于制药公司发布了大量数据集,出现了新的抗疟药物发现方法。本综述深入了解了这些新的药物发现方法,涵盖了不同的机器学习工具,这些工具有助于开发新化合物。它系统地回顾了机器学习在预测、分类和聚类抗恶性疟原虫生物活性化合物的 IC 50 值方面的应用和前景。作者确定了许多尚未用于此目的的机器学习工具。然而,随机森林和支持向量机已经广泛应用于有限的化合物数据集。
疟原虫通过裂殖生殖复制,即异步核分裂,然后是半同步分裂和胞质分裂。成功的分裂需要双层膜结构,即内膜复合体 (IMC)。在这里,我们证明 Pf FBXO1 (PF3D7_0619700) 对无性分裂和配子体成熟都至关重要。在弓形虫中,FBXO1 同源物 Tg FBXO1 对子细胞支架的发育和子细胞 IMC 的组成部分至关重要。我们证明 Pf FBXO1 在发育中的裂殖子顶端区域附近形成类似的 IMC 起始支架,并单侧定位在恶性疟原虫的配子体中。虽然 Pf FBXO1 最初定位于分裂寄生虫的顶端区域,但随着分裂的进展,它会显示出类似 IMC 的定位。类似地,Pf FBXO1 定位于配子体中的 IMC 区域。诱导敲除 Pf FBXO1 后,寄生虫会发生异常的分节和有丝分裂,产生无法存活的子代。缺乏 Pf FBXO1 的配子体形状异常,无法完全成熟。蛋白质组学分析确定 Pf SKP1 是 Pf BXO1 的稳定相互作用伙伴之一,而其他主要蛋白质包括多种 IMC 膜蛋白和膜蛋白。我们假设 Pf FBXO1 是恶性疟原虫有性和无性阶段中 IMC 生物合成、染色体维持、囊泡运输和泛素介导的蛋白质翻译调控所必需的。
WHO治疗指南建议在所有区域对由疟原虫疟原虫引起的血液阶段感染的41治疗中阿甘莫动蛋白 - 综合疗法(ACT)(氯喹42仅在维瓦克斯疟原虫仍然对氯喹敏感的地区推荐)。在恶性疟原虫中,在体内定义了43个对青蒿素衍生物的部分耐药性,是治疗后第44天检测到的寄生虫病,或者是寄生虫清除斜率≥5小时的半衰期。我们搜索了45 PubMed,以在1990年至2月47日在47 2025年之间发表的术语“ vivax”和“清除率”和(“ Artesunate”或46“ Dihydroartemisinin”或“ Artemisether”或“ Artemisinin”),没有语言限制。我们的搜索检索了102个研究,对标题和48个摘要进行了筛选,以识别21项用49个青蒿素衍生物报告的维瓦克斯治疗结果的研究。所有这些研究得出的结论是,青蒿素衍生物提供了50次快速的疟原虫寄生虫清除率,但两项研究报告了第3天的阳性频率很低,阳离子51阳性51次阳离子治疗(巴西为2.6%)或二脑蛋白酶素磷酸52(Indononesia的0.6%)。没有研究报告清除斜率半衰期≥5小时。53
1 Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90089, USA 2 Huck Institutes Center for Eukaryotic Gene Regulation, University of Southern California, Los Angeles, CA 90089, USA 3 Huck Institutes Center for Malaria Research, University of Southern California, Los Angeles, CA 90089, USA 4 Center for Genomic and Computational Biology, University of Southern加利福尼亚,洛杉矶,加利福尼亚州90089,美国5个生物统计学和生物信息学系,南加州大学,洛杉矶大学,洛杉矶,CA 90089,美国6计划生物学与生物信息学方面,南加州大学,洛杉矶大学,洛杉矶大学,加利福尼亚州90089,CA 90089,美国7年定量和计算生物学系,美国南加州大学8 00,洛斯,加利福尼亚州,洛斯,加利福尼亚州。 of Southern California, Los Angeles, CA 90089, USA 9 Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA 10 Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA 11 Department of Computer Science, Durham, NC 27708, USA 12 Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708,美国13宾夕法尼亚州大学公园,宾夕法尼亚州16802,宾夕法尼亚州立大学化学系
抽象的亲脂蛋白是一种必不可少的,高度表达的脂质转运蛋白,分泌并在昆虫血淋巴中循环。我们劫持了肛门coluzzii脂肪素基因,使其共表达了抗体2A10的单链版本,该版本结合了疟原虫疟原虫恶性疟原虫的孢子岩。所产生的转基因蚊子表明,将表达恶性疟原虫的berghei传输的能力明显降低,向小鼠表达了恶性疟原虫的p. p. p. p. purciparum purciparum purciparum purcorozoite蛋白。为了迫使这种抗菌转基因在蚊子种群中的传播,我们设计并测试了几种基于CRISPR/CAS9的基因驱动器。其中之一安装在促寄生虫基因saglin中,并裂解野生型脂素蛋白,从而导致抗癌化的修饰的脂蛋白版本与Saglin Drive一起替换野生型和搭便车。尽管产生了抗驱动器等位基因并在其GRNA编码的多重阵列中显示不稳定,但基于Saglin的基因驱动器在笼中的蚊子种群中达到了高水平,并有效地促进了抗菌性脂蛋白:: sc2a10等位基因的同时扩散。这种组合有望通过两种不同的机制减少寄生虫的传播。这项工作有助于设计新型策略,以在蚊子中传播抗疟疾转基因,并说明建立种群修饰基因驱动器时遇到的一些预期和意外的结果。
1 Rene´ Rachou 研究所,Fiocruz Minas,Oswaldo Cruz 基金会 (Fiocruz),贝洛奥里藏特,米纳斯吉拉斯州,巴西,2 微生物学系,病毒实验室,生物科学研究所,米纳斯吉拉斯联邦大学 (UFMG),贝洛奥里藏特,米纳斯吉拉斯州,巴西,3 病理学系,阿姆斯特丹自由大学医学中心,荷兰,4 全球卫生和跨学科疾病研究中心,公共卫生学院,南佛罗里达大学,佛罗里达州坦帕,美国,5 Leonidas & Maria Deane 研究所,Fiocruz Amazonia,Oswaldo Cruz 基金会,马瑙斯,亚马逊州,巴西,6 Dr. Heitor Vieira Dourado 热带医学基金会,Carlos Borborema 临床研究中心,马瑙斯,亚马逊州,巴西, 7 巴西马托格罗索州库亚巴马托格罗索联邦大学 (UFMT) 医学院胡里奥·穆勒大学医院
背景。正在对全恶性疟原虫子孢子 (PfSPZ) 疫苗的疟疾预防效果进行评估。该疫苗通过静脉注射以达到最大效果。PfSPZ 疫苗的直接静脉接种 (DVI) 对成人来说是安全、可耐受且可行的,但对儿童和婴儿的安全数据有限。方法。我们在肯尼亚西部的 Siaya 县进行了一项年龄降级、剂量递增的随机对照试验。儿童和婴儿(年龄为 5-9 岁、13-59 个月和 5-12 个月)被纳入 13 个年龄剂量组,每组 12 名参与者,按 2:1 的比例随机分配接受疫苗或生理盐水安慰剂,剂量逐渐增加:1.35 × 10 5 、2.7 × 10 5 、4.5 × 10 5 、9.0 × 10 5 和 1.8 × 10 6 PfSPZ,两次最高剂量给药,间隔 8 周。在接种疫苗后 8 天内监测主动建议的不良事件 (AE),在 29 天内监测主动建议的 AE,并在整个研究过程中监测严重 AE。使用酶联免疫吸附试验检测接种前和接种后 1 周采集的血液中是否存在针对恶性疟原虫环子孢子蛋白 (PfCSP) 的免疫球蛋白 G 抗体。结果。接种疫苗者和对照组中主动诱导 (35.7% vs 41.5%) 和主动诱导 (83.9% vs 92.5%) 的 AE 发生率相似。未发生相关的 3 级 AE、严重 AE 或 3 级实验室异常。大多数 (79.0%) 疫苗接种由单个 DVI 进行。在 9.0 × 10 5 和 1.8 × 10 6 PfSPZ 组中,45 名接种疫苗者中有 36 名 (80.0%) 和 21 名安慰剂对照组中有 4 名 (19.0%) 产生了针对 PfCSP 的抗体 (P < .001)。结论。剂量高达 1.8 × 10 6 的 PfSPZ 疫苗可以通过 DVI 给婴儿和儿童接种,并且安全、耐受性良好且具有免疫原性。
脑疟疾 (CM) 是最致命的严重疟原虫感染形式。目前,我们对疟原虫诱发 CM 的机制了解有限。由啮齿动物寄生虫伯氏疟原虫 ANKA (Pb ANKA) 感染引起的 CM 小鼠模型实验性 CM (ECM) 已被广泛用于研究 CM 的病理生理学。最近的基因组分析表明,Pb ANKA 和密切相关的伯氏疟原虫 NK65 (Pb NK65)(不会引起 ECM)的编码区仅在 21 个单核苷酸多态性 (SNP) 上有所不同。因此,含有 SNP 的基因可能有助于 ECM 的发病机制。虽然这些 SNP 中的大多数位于功能未知的基因中,但有一个 SNP 位于疟原虫 ApiAP2 转录因子家族成员的 DNA 结合位点,我们最近发现它作为毒力因子发挥作用,改变宿主对寄生虫的免疫反应。在这里,我们研究了这种 SNP 对 ECM 发育的影响。我们使用 CRISPR-Cas9 工程寄生虫的结果表明,尽管它具有免疫调节功能,但 SNP 既不是诱导 ECM 的必要条件也不是充分条件,因此无法解释寄生虫菌株在 ECM 表型方面的具体差异。
1个单位进化和寄生姐妹(UNEREP),国际研究中心,弗朗西斯维尔(CIRMF),弗朗西维尔bp 769,加蓬; biteghebiteghe@gmail.com(J.-C.B.-B.-E.); borislendongo@yahoo.fr(J.B.L.W。); onouaseinnat@gmail.com(S.-S.O.); lyds_ass@yahoo.fr(L.S.O.-L。); mpega_mb2@yahoo.fr(c.n.m.m.n.); charleneklc@gmail.com(l.c.k.); lekana_jb@yahoo.fr (J.-B.L.-D.) 2 Laboratory of molish and cellular biology (LABMC), University of Masuku Sciences and Techniques, Franceville BP 943, Gabon 3 unit of Emerging Viral Diseases (UMVE), International Research Center M É DICALES DE FRANCEVILLE, Franceville BP 769, Gabon; s_lekana@yahoo.fr 4 Mivegec,IRD,CNRS,Montpellier大学,法国蒙彼利埃34900; rougeron.virginie@gmail.com 5博士学位学校在热带感染力学领域,法国维尔bp 876,Gabon 6 D Ettement de Parasitologie-Mycologie,Universitédesciencesde des Sciences de laSanté大学,Libreville BP 4008,Gabon * sostomence:Imboumykarl@imboumykarl@imboumykarl@imboumykarl@imboumykarl@n n@gmail@gmail@gmail;这样的。: +241-660-72638
Mariano Mariano,Fernando Batista,Maurel Manon,Anthony Bouillon,Laura Ortega,Anne Marie Wehenkel,Lucile骑士,Blondel Ahmed,Ahmed Haouz,Jean-François,
