引起疟疾的疟原虫通过传染性按蚊叮咬传播。有关寄生虫传播方式的详细信息,请参阅附录 A:疟疾生命周期。五种疟原虫可导致人类患病:恶性疟原虫、间日疟原虫、卵形疟原虫、三日疟原虫和诺氏疟原虫。由于疟疾在 20 世纪 50 年代初在美国被消灭,因此人们认为美国居民对疟疾没有免疫力,容易患上重病甚至死亡。在美国,每年约有 2,000 人被诊断出患有疟疾,其中大多数人是在存在持续蚊媒传播(输入性疟疾)的国家感染疟疾的。由于可传播疟疾的按蚊遍布大多数州,因此在美国境内,疟疾有可能从输入病例传播给非旅行者(但很少见)。
一项随机,开放标签的多中心研究,用于比较Klu156与CoAttem®在成人和儿童≥5kg体重的儿童中的疗效,安全性和耐受性,随后是重复的KLU156治疗阶段 (KALUMA)..........................................................................................................................
引言疟疾仍然是一个巨大的全球挑战,2019年报告了2.29亿新病例和409,000例死亡。其致病剂是来自疟原虫属的原生动物寄生虫,其中恶性疟原虫(PF)是最猛烈的。自2015年以来,根除疟疾的进度速度已减慢(1),这表明需要开发新的更好的工具。疟原虫感染是当感染的蚊子释放在血液粉期间平均释放到孢子虫中的数十个孢子虫(2,3)时。孢子岩是细胞外运动寄生虫形式,通过真皮滑行和迁移,最终进入循环并到达肝脏(4)。在长达2-3个小时的旅程中,自由的孢子虫很容易受到伤害,同时暴露于宿主免疫系统(3,5)。一旦在肝脏内,孢子虫会遍历许多细胞屏障,然后最终入侵肝细胞以无症状的繁殖和成熟(4)。7天后,无性寄生虫形式被释放到循环中,从而引起疟疾的临床表现。大多数开发PF -Malaria疫苗的努力是针对孢子虫/肝脏阶段的,因为它们代表了寄生虫生命周期中的瓶颈,并且可以防止血液阶段的疾病进展。疫苗候选物主要以围皮蛋白(CSP)为中心,是最丰富和免疫原性的孢子表面抗原(6,7)。RTS,S/AS01和R21/MM疫苗是主要和最先进的代表(8、9)。CSP特异性mAb能够阻断肝细胞的PF Sporozoite感染,并在体外和动物模型中防止进一步的寄生虫发育(10-12)。在控制人类疟疾感染后,健康志愿者(www.clinicaltrials.gov; NCT04206332)在I期临床试验中显示出保护性功效(13)。
摘要:疟原虫对所有现有抗疟药物的耐药性不断加剧,这要求我们开发更好的治疗化合物和适当的靶向给药策略。将抗疟药物装载在专门针对寄生虫的纳米载体中,将有助于降低总剂量,减少对患者的副作用,并向寄生细胞提供更高的局部剂量,从而提高对病原体的杀伤力。本文,我们报告了具有抗疟负载能力的树枝化超支化聚合物 (DHP) 的开发情况,这些聚合物涂有肝素,可特异性地靶向被恶性疟原虫寄生的红细胞。所得的 DHP-肝素复合物具有肝素固有的抗疟活性,IC50 约为 400 nM,此外还特异性地靶向恶性疟原虫感染的红细胞(相对于未感染的红细胞)。 DHP − 肝素纳米载体对迄今为止描述的有限结构家族具有潜在的重要贡献,可用于装载和靶向递送当前和未来的抗疟化合物。关键词:树枝状聚合物、靶向药物递送、疟疾、纳米载体、肝素
全球恶性疟原虫(最致命的疟疾寄生虫,也是非洲大陆最流行的疟疾寄生虫)印度尼西亚恶性疟原虫、间日疟原虫(撒哈拉以南非洲以外大多数国家的主要疟疾寄生虫)和诺氏疟原虫 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report- 2023
引起疟疾的疟原虫每个基因组约 30 Mb,编码约 5000 个基因,但大多数基因的功能仍不清楚。这是因为从序列同源性中获取的功能注释很少,而且与许多模型生物相比,其遗传可处理性较低。近年来,技术突破使得在疟原虫中进行正向和反向基因组规模筛选成为可能。此外,成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 9 (CRISPR/Cas9) 技术的应用大大提高了单基因水平的基因编辑效率。在这里,我们回顾了疟原虫基因筛选的出现,以分析寄生虫基因在基因组规模上的功能及其对理解寄生虫生物学的影响。 CRISPR/Cas9 筛选彻底改变了人类和模型生物的研究,但由于需要更复杂的 CRISPR/Cas9 基因靶向载体库,因此尚未在疟疾寄生虫中实施。因此,我们向读者介绍了相关顶复门弓形虫中基于 CRISPR 的筛选,并讨论了如何调整这些方法来开发基于 CRISPR/Cas9 的疟疾寄生虫基因组规模遗传筛选。此外,由于超过一半的疟原虫基因是正常无性血液阶段繁殖所必需的,并且无法使用敲除方法进行靶向,我们讨论了如何使用 CRISPR/Cas9 来扩大条件基因敲除方法,以系统地为必需基因分配功能。
摘要肠道菌群已成为宿主免疫和健康的关键调节剂,越来越多的证据表明其在包括疟疾在内的传染病中的重要作用。本综述探讨了肠道微生物群和疟原虫感染之间的复杂相互作用,强调了微生物群落影响疟疾易感性,疾病进展和免疫反应的机制。讨论了对微生物群衍生的代谢产物的关键见解,其免疫调节作用以及它们干扰疟原虫生命周期的潜力。此外,基于微生物群的干预措施,例如益生菌,益生元和合成微生物组,被强调为预防疟疾和控制的有希望的策略。尽管有这些进展,但仍在将这些发现转化为实际解决方案,尤其是在资源有限的环境中。解决这些障碍需要跨学科的合作和创新方法。通过利用肠道微生物群,我们可以解锁抗击疟疾和推进全球健康计划的新途径。关键字:疟疾,疟原虫,肠道菌群,营养不良,益生菌和益生元
疟疾是一种由疟原虫属寄生虫引起的血液传播感染,仍然是全球健康威胁。在 2022 年的 2.49 亿疟疾病例中,超过 60 万例死亡(见 go.nature.com/48ummr6)。大多数疟疾死亡病例发生在撒哈拉以南非洲感染恶性疟原虫的儿童中。在第 182 页,Reyes 等人 1 深入了解了抗体如何靶向关键的寄生虫蛋白。与恶性疟原虫感染相关的严重疾病的一个标志是一种称为隔离的现象(图 1),其中寄生虫感染的红细胞粘附在小血管(微血管)上。这可以防止脾脏中这些血细胞被破坏。隔离会导致血流受阻、炎症、器官损伤和危及生命的并发症,例如一种称为脑型疟疾的临床病症。隔离是由多域寄生虫蛋白家族 PfEMP1 中的特定相互作用介导的,这些蛋白在受感染的红细胞表面表达。这些蛋白质与血管内皮细胞上的受体相互作用 2–4 。
