动画线Inbetwewing是动画制作的关键步骤,旨在通过预测两个关键帧之间的中间线艺术来增强动画流动性。但是,现有方法在有效地解决稀疏像素和行动中的重大运动时面临挑战。在文献中,通常采用倒角距离(CD)来评估表现性能。尽管达到了有利的CD值,但现有方法通常会产生与线路断开连接的插入框架,尤其是对于涉及大型运动的场景 - iOS。为了解决这个问题,我们提出了一种简单而有效的插值方法,用于动画线,其中采用基于薄板样条的变换来更准确地估算两个关键帧之间的关键点对应关系,尤其是对于大型运动方案。在粗估计的基础上,使用简单的UNET模型在最终框架插值之前,采用了一个运动精炼模块来进一步增强运动细节。此外,为了更多地评估动画线的性能,我们完善了CD指标,并引入了一个名为“加权倒角距离”的新指标,该指标与视觉感知质量具有更高的一致性。此外,我们结合了Earth Mover的距离并进行用户研究以提供更全面的评估。我们的方法通过以增强的流动性提供高质量的介导结果来执行现有方法。
摘要背景凝血酶是一种多功能的止血调节酶,具有促凝和抗凝作用。因此,几十年来它一直是药物研发的主要目标。凝血酶是一种丝氨酸蛋白酶,具有两个带正电荷的区域(称为外部位点),已知它可以通过这些区域与许多底物结合。达比加群是一种凝血酶抑制剂,广泛用作口服抗凝剂,用于心房颤动和静脉血栓栓塞的抗血栓治疗。达比加群抑制凝血酶的机制是阻断活性位点,然而,它对凝血酶与底物结合的影响尚未得到彻底研究,因此对其了解甚少。材料和方法使用荧光标记的凝血酶和洗涤过的血小板,通过流式细胞术评估达比加群对凝血酶与血小板结合的影响。此外,为了证实结果,我们利用了现代生物分子结合研究技术、微尺度热泳动 (MST) 和表面等离子体共振 (SPR),对结果进行了验证。结果流式细胞术分析显示达比加群抑制凝血酶与血小板结合。抑制呈剂量依赖性,IC50 为 118 nM,略低于抑制血小板活化的 IC50,接近达比加群的临床相关血浆浓度。MST 和 SPR 也证实了达比加群对凝血酶与血小板结合的抑制作用。结论除了阻断活性位点外,达比加群还抑制凝血酶与血小板结合。由于凝血酶除了心血管系统之外还有许多其他功能,这一发现可能具有重要意义。
每辆配备 ALPR 系统的 SPD 车辆都安装了三个摄像头,当车牌上的字母和数字进入视野时,它们会对其进行扫描 - 这些被称为读取。最初看起来与热门列表中的项目匹配的读取被称为未经验证的匹配 - 该热门列表的车牌信息来源于华盛顿犯罪信息中心、FBI 的国家犯罪信息中心、华盛顿州许可证管理部和 SPD 调查。这是因为匹配必须由警官和/或调度员验证为真正匹配。并非所有匹配都是真正匹配,需要警官确认。在某些情况下,ALPR 系统可能会误读数字(例如,将“1”误认为“I”或将“8”误认为“B”)。在其他情况下,车牌包含与已知被盗车辆相同的数字,但来自不同的州。因此,警官必须通过比较读取的内容和潜在匹配来目视确认每个匹配,以确保数字和发行州与热门列表中的记录完全匹配。读取、命中和误读的图像会自动存储在 ALPR 数据库中,SPD 会将其保留 90 天,然后再清除。
方法:本研究分析了 2005-2018 年全国健康和营养检查调查 (NHANES) 的数据。糖尿病和糖尿病前期的患病率以及 HDL-C 水平和血小板计数均来自横断面调查。PHR 通过将血小板计数除以 HDL-C 浓度计算得出,并根据既定的临床标准对糖尿病或糖尿病前期进行分类。我们使用多元逻辑回归分析来估计比值比 (OR) 和 95% CI。逻辑回归模型分为分类模型和连续模型。使用受限三次样条函数 (RCS) 和两段线性回归评估潜在的非线性关系以确定任何拐点。此外,还进行了亚组和相互作用分析以确定不同人群之间的差异。
具有从荧光到发光的宽灵敏度范围的高灵敏度/高速相机。作为荧光/发光板成像仪,可高通量地执行各种测定。由于微孔板的所有孔都是同时读取的,因此在添加底物后,荧光指示剂或孔间测量没有时间滞后。要测量快速荧光动力学,可以使用高速数据捕获功能(可选)以最多 5 毫秒的间隔捕获数据。当需要在短时间内采样时,例如使用高速电压敏感荧光染料和评估 iPS 细胞衍生的心肌细胞时,它是有效的。对于荧光和发光的测量,通过 FRET 和 BRET 等能量转移进行双波长测量是离子通道和蛋白质动力学分析的有效方法。通过安装在传感器前面的荧光滤光片转换器,可以高通量地进行双波长测量。
抽象背景是为了避免使用多轴伏锁板(VLP)进行远端半径骨折的骨质合成时,避免螺钉渗透到关节中,重要的是要注意,根据板位置,最佳螺丝插入角度。目的本研究的目的是2倍:第一,以评估最远端板块位置的差异,其中螺钉在三维(3D)半径模型中未渗透到关节中;其次,评估板位置与远端半径的横向直径之间的关系。患者和方法对健康手腕进行了30张普通X射线和计算机断层扫描(CT)扫描。横向直径在普通X射线上测量。3D半径模型是从CT数据中重建的。使用多轴VLP的3D图像研究在三个不同的螺钉插入角处最远端板块位置。测量了伏特关节边缘和板边缘之间的线性距离,并比较不同的螺丝插入角度。还评估了板位置与横向直径之间的相关性。另外,最远端螺钉位置和关节表面之间的关系与远端半径裂缝一起确定。结果,相对于中性的最佳位置在远端挥杆中为2.7 mm,在近端摆动中为1.9 mm。线性距离与每组的横向直径显着相关。这些结果可能是术前计划的参考。证据级别III。证实,最远端螺钉位置和关节表面之间的关系适用于实际情况。结论结果表明,多轴VLP的最远端位置取决于螺钉插入角,并且随着横向直径的增加而变得更加近端。
根据当前的注释,以最大程度地降低通过人或兽医产品传播动物海绵脑病风险的风险,我们检查了针对特定动物来源,起源国和感染性类别的原材料COO。我们既没有从高感染性组织(IA)获得的储存或反刍动物原材料,也没有其动物来源的反刍动物原材料起源于具有不确定风险的国家或地区(CAT C/GBR IV)。
被动空气(即沉降板)采样是环境监测 (EM) 计划的关键部分。从历史上看,监管指南(如附件 1)概述了使用 90 毫米琼脂板进行药典被动空气采样。虽然这种方法可以有效捕获空气中的污染物,但手动培养这些传统的 90 毫米沉降板会减慢产品发布时间,从而降低其在高通量环境中的效率。附件 1 的最新更新建议使用经过验证的快速微生物学方法 (RMM) 来帮助快速检测环境和产品中的潜在污染物¹。本白皮书总结了 Rapid Micro Biosystems 与罗格斯大学合作进行的一项研究,该研究评估了使用 Growth Direct ® System EM 应用程序作为传统 90 毫米板的替代品。
摘要:本文提出了一种高度准确的自动板识别(ANPR)算法,旨在正确识别超过99.5%精度的印度车牌。该系统结合使用OpenCV,Python和机器学习模型来达到这一高度的精度。算法捕获和处理图像以识别和识别车牌,包括板上的颜色。使用HAAR级联反应进行初始板识别,然后将其转移到Yolo V3,从而提高了精度和速度。该系统结合了复杂的图像预处理技术 - 包括灰度调整,阈值,侵蚀,细节和轮廓检测 - 以确保对图像进行优化,以用于角色分离和识别。这种综合方法不仅提高了识别率,而且更有效地处理图像,尤其是在传统系统可能失败的情况下。结果,它为在动态环境中的强大ANPR实现铺平了道路。
平板计数琼脂(标准方法琼脂)二型用途板计数琼脂(标准方法琼脂)用于从牛奶和乳制品,食品,水和其他卫生材料中获取微生物板计数,该材料符合BIS规格LS 5402:2012:2012。如Buchbinder等人所述,摘要板数琼脂是配制的,相当于牛奶和其他乳制品中微生物的板计数APHA推荐的培养基,也可以用于确定食品,水和其他材料的卫生质量,适用于获得纯平室的细菌计数。 它包含在食品和化妆品测试的细菌分析手册中。 原理胰酮提供氮气和其他氨基酸。 酵母提取物提供B复杂的维生素,而葡萄糖是能源。 配方 *成分G/L酪蛋白5.0酵母提取物的酶促摘要2.5葡萄糖,无水1.0琼脂15.0最终pH(在25°C下)7.0±0.2 *调整为适合性能参数。 储存和稳定存储在紧密闭合的容器和2°C-8°C下制备的培养基中脱水的培养基脱水。 避免冷冻和过热。 在标签上到期日之前使用。 打开后,保持粉末状培养基闭合以避免补水。 样品,牛奶和乳制品样品的类型;根据已建立的指南,水样品收集和处理临床样品的处理遵循适当的处理标本的技术。 对于食物和乳制品样本,根据已建立的指南遵循适当的处理标本的技术。 指示摘要板数琼脂是配制的,相当于牛奶和其他乳制品中微生物的板计数APHA推荐的培养基,也可以用于确定食品,水和其他材料的卫生质量,适用于获得纯平室的细菌计数。它包含在食品和化妆品测试的细菌分析手册中。原理胰酮提供氮气和其他氨基酸。酵母提取物提供B复杂的维生素,而葡萄糖是能源。配方 *成分G/L酪蛋白5.0酵母提取物的酶促摘要2.5葡萄糖,无水1.0琼脂15.0最终pH(在25°C下)7.0±0.2 *调整为适合性能参数。储存和稳定存储在紧密闭合的容器和2°C-8°C下制备的培养基中脱水的培养基脱水。避免冷冻和过热。在标签上到期日之前使用。打开后,保持粉末状培养基闭合以避免补水。样品,牛奶和乳制品样品的类型;根据已建立的指南,水样品收集和处理临床样品的处理遵循适当的处理标本的技术。对于食物和乳制品样本,根据已建立的指南遵循适当的处理标本的技术。指示对于水样品,按照既定准则和当地标准遵循适当的技术来处理标本。应在给药之前获得标本。使用后,必须在丢弃前高压灭菌对受污染的材料进行消毒。