Rajwant Sidhu,博士; DDI,CORP。摘要:IPC 6012B表3-2中指定的铜包装板是为了提高PCB的可靠性,该铜板是针对PCB的可靠性,该可靠性是通过需要平面化和表面上限的VIA结构设计的。 PCB在没有包裹板的情况下构建的PCB更容易容易出现与枪管铜与表面铜的互连之间的分离相关的故障。 可靠性的提高是铜包裹厚度的函数,该曲线厚度支持IPC II类和III类程序的差异。 一般规则是“包装板越厚,可靠性越好”。铜厚度的增加,与包装板相关,但是与PCB制造商生产具有高密度和精细特征的产品的能力。 制造精美特征的一般规则是“铜越少,制造性越好。” DDI Corp开发的技术。 称为Flat-wrap™提供的铜包装溶液不需要在填充板孔的外表面上积聚铜。 这可以提高可靠性,而无需牺牲具有高密度和/或精细功能的设计能力。 这项技术在过程中也有助于非破坏性铜厚度测量,并确保整个板表面的铜包裹厚度的一致性。 在这项技术中,填充板孔的外表面铜厚度将控制铜包裹厚度。 在需要多个铜包装的印刷电路板设计中,该技术的好处更为明显。Rajwant Sidhu,博士; DDI,CORP。摘要:IPC 6012B表3-2中指定的铜包装板是为了提高PCB的可靠性,该铜板是针对PCB的可靠性,该可靠性是通过需要平面化和表面上限的VIA结构设计的。PCB在没有包裹板的情况下构建的PCB更容易容易出现与枪管铜与表面铜的互连之间的分离相关的故障。可靠性的提高是铜包裹厚度的函数,该曲线厚度支持IPC II类和III类程序的差异。一般规则是“包装板越厚,可靠性越好”。铜厚度的增加,与包装板相关,但是与PCB制造商生产具有高密度和精细特征的产品的能力。制造精美特征的一般规则是“铜越少,制造性越好。” DDI Corp开发的技术。称为Flat-wrap™提供的铜包装溶液不需要在填充板孔的外表面上积聚铜。这可以提高可靠性,而无需牺牲具有高密度和/或精细功能的设计能力。这项技术在过程中也有助于非破坏性铜厚度测量,并确保整个板表面的铜包裹厚度的一致性。在这项技术中,填充板孔的外表面铜厚度将控制铜包裹厚度。在需要多个铜包装的印刷电路板设计中,该技术的好处更为明显。本文探讨了铜包板的当前过程问题,并讨论了新技术在制造和可靠性方面提供的好处。简介:多层PCB生产是一种不断发展的,越来越复杂的处理技术,客户需求,设计规则和产品规格。将多次添加新的过程以满足某些需求,但并不容易并完全集成到现有过程网络中。总是有一个更好的方法来改善和简化制造过程。IPC在IPC 6012B规格中添加了铜包板的需求,需要从填充的板孔中镀有铜板才能继续围绕孔的膝盖围绕并表面上。引入了此要求,以提高由于表面特征/盖和板孔壁之间的分离而导致故障的可靠性。由于铜包装板而引起的表面铜厚度增加给制造商制造和设计人员设计PCB的挑战带来了额外的挑战。本文重点介绍了处理IPC 6012B中指定的铜包装要求的当前问题以及称为Flat-Wrap™的新技术的好处。IPC 6012包装镀金规范:IPC-6012B指定铜包装板应从填充的板孔连续到板条结构的外表面,并至少延伸至至少25微米(984微英寸),其中需要一个环形环。图1显示了此要求。图2显示,通过加工(打磨,蚀刻,平面化等)的任何减少包装板的减少。不允许导致包装不足。IPC-6012B表3-2给出了铜包裹厚度的要求。2类设计的连续最小包裹要求为0.000197“,对于3类设计为0.000472”。
摘要 - 讨论了简单薄板和板材试件在各种实验研究目的中的实用性。试件应尽可能代表实际疲劳问题的条件,而对于疲劳裂纹萌生阶段,这一点比宏观裂纹扩展更难实现。在许多情况下,由于与工程结构条件的相似性不够,因此不推荐使用小试件。较大的试件有利于裂纹长度和裂纹闭合的测量。Cor.1:lct 拉伸试件和最近提出的派生试件是不对称试件,而中间裂纹试件、中央缺口试件和双边缘缺口试件是对称的。出于实验原因以及与实际疲劳问题的条件更相似的考虑,应优先使用后者试件。非对称试件的一个显著缺点是应力强度因子 (dKJda) 的梯度较大。关键词 - 疲劳试件;对称试件;非对称试件; K 梯度。
摘要 GaN HEMT 在高功率和高频电子器件中起着至关重要的作用。在不影响可靠性的情况下满足这些器件的苛刻性能要求是一项具有挑战性的工作。场板用于重新分配电场,最大限度地降低器件故障风险,尤其是在高压操作中。虽然机器学习已经应用于 GaN 器件设计,但它在以几何复杂性而闻名的场板结构中的应用是有限的。本研究介绍了一种简化场板设计流程的新方法。它将复杂的 2D 场板 2 结构转换为简洁的特征空间,从而降低了数据要求。提出了一种机器学习辅助设计框架来优化场板结构并执行逆向设计。这种方法并不局限于 GaN HEMT 的设计,可以扩展到具有场板结构的各种半导体器件。该框架结合了计算机辅助设计 (TCAD)、机器学习和优化技术,简化了设计流程。
摘要 - 讨论了简单薄板和板材试样在各种实验研究目的中的实用性。试样应尽可能代表实际疲劳问题的条件,这对于疲劳裂纹萌生阶段比宏观裂纹扩展更难实现。在许多情况下,由于与工程结构条件的相似性不够,因此不建议使用小试样。较大的试样有利于测量裂纹长度和裂纹闭合。Cor.1:lct 拉伸试样和最近提出的派生试样是不对称的试样,而中间裂纹截面、中央缺口试样和双边缘缺口试样是对称的。出于实验原因以及与实际疲劳问题的条件更相似的考虑,应优先使用后者试样。不对称试样的一个显著缺点是应力强度因子 (dKJda) 的高梯度。关键词 - 疲劳试样;对称试样;不对称样本;K 梯度。
15.补充说明由船舶结构委员会赞助。由其成员机构共同资助。16.摘要 使用双板或“倍增器”已成为临时船舶维修的常规方法。与成本更高的永久焊接板插入件维修相比,由于其安装相对容易且成本低,因此它是船舶结构修复板材腐蚀的首选方法。缺乏性能数据和工程设计指导是目前仅认为使用倍增器进行临时维修的原因。该项目旨在制定一套用于设计和应用双板维修船舶结构的指南。指南是使用以下标准制定的:各种应力分析、屈曲强度、主要应力评估、腐蚀类型和速率、焊接类型以及双板疲劳和断裂评估。通过与主要船体性能进行比较,研究和了解双板修复性能,可以更轻松、更自信地做出关键的操作决策。但是,该项目的最终目标是确定水面舰艇双板修复应用的设计和限制。17.关键词 双板、疲劳、断裂、屈曲、腐蚀、船舶 18.分发声明 分发可通过以下方式向公众提供: 国家技术信息服务 美国商务部 斯普林菲尔德,弗吉尼亚州 22151 电话(703) 487-4650
根据当前的注释,以最大程度地降低通过人或兽医产品传播动物海绵脑病风险的风险,我们检查了针对特定动物来源,起源国和感染性类别的原材料COO。我们既没有从高感染性组织(IA)获得的储存或反刍动物原材料,也没有其动物来源的反刍动物原材料起源于具有不确定风险的国家或地区(CAT C/GBR IV)。
副本编号 1+6-Comdr.RS Mandelkorn,美国海军,武装部队特种武器项目副本编号 24 - AG Bisseli,舰船局副本编号 47 - A. Amirikian,船厂和船坞局副本编号 48 - J. W, Jenkins,舰船局副本编号 149- Noah Kahn,纽约海军造船厂副本编号 50 - i。 M. MacCutcheon,Jr., Qvid Taylor模型盆地副本编号。51 – WR Osgood,DavidTaylor模型盆地副本编号。52 – NE Promisel,航空局副本编号。53 – John Vasta,舰船局副本编号。54 – JE Walker,舰船局,代码 343 副本编号。55 和 56 – 美国海军工程实验站副本编号。57 和 58 – 海军研究实验室副本编号。59 – 纽约海军造船厂,材料实验室副本编号。60 – 工业测试实验室,费城海军 bhipyx'd 副本 1?0。 61 - 费城海军造船厂副本编号 62 - 旧金山海军造船厂副本编号 63 - David TaylorModelBasin,收件人:图书馆副本 64 和 65 - 出版物委员会,海军部,通过船舶局,代码 330c
大陆俯冲的动力学在很大程度上受俯冲通道所涉及的岩石的流变特性控制。蛇形矿在地质应变速率下的粘度较低。然而,仍然缺乏大陆俯冲过程中蛇纹石通道的引人注目的地球物理证据。在这里,我们表明,沿欧洲板和上覆的亚得里亚海地幔之间的板界面,在西阿尔卑斯山下方发现异常低的剪切波速度。我们建议这些地震速度表明弱化石蛇纹石通道的堆叠残留物,其中包括在海洋流量和地幔北向蛇形蛇状岩形成的深蛇纹石片,由从支撑板的散发器释放而成。我们的结果表明,这种蛇形化的板界面可能有利于将大陆壳俯冲到上地幔中,以及超高压力变质岩石的形成/发掘,提供了新的限制,以发展大陆俯冲动力学的概念和定量理解。
C118L-E:在冷却器应用中针对R410A进行了优化的蒸发器,从40到200kW。C118-E:用于冷却器应用中中等密度制冷剂的蒸发器,从40到200kW。C118L-C:在冷却器应用中优化的冷凝器,从40到200kW。C118-C:在冷却器应用中针对中密度制冷剂优化的冷凝器,从40到200kW。H118L-C:在20至150kW的热泵应用中针对高密度制冷剂进行了优化的冷凝器。H118-C:在20至150kW的热泵应用中针对中等密度制冷剂优化的冷凝器。H118L-E:在20至120kW的热泵应用中针对R410A进行了优化的蒸发器。H118-E:中等密度制冷剂在热泵应用中的蒸发器,从20至120kW。
副本编号 1+6-Comdr.RS Mandelkorn,美国海军,武装部队特种武器项目副本编号 24 - AG Bisseli,舰船局副本编号 47 - A. Amirikian,船厂和船坞局副本编号 48 - J. W, Jenkins,舰船局副本编号 149- Noah Kahn,纽约海军造船厂副本编号 50 - i。 M. MacCutcheon,Jr., Qvid Taylor模型盆地副本编号。51 – WR Osgood,DavidTaylor模型盆地副本编号。52 – NE Promisel,航空局副本编号。53 – John Vasta,舰船局副本编号。54 – JE Walker,舰船局,代码 343 副本编号。55 和 56 – 美国海军工程实验站副本编号。57 和 58 – 海军研究实验室副本编号。59 – 纽约海军造船厂,材料实验室副本编号。60 – 工业测试实验室,费城海军 bhipyx'd 副本 1?0。 61 - 费城海军造船厂副本编号 62 - 旧金山海军造船厂副本编号 63 - David TaylorModelBasin,收件人:图书馆副本 64 和 65 - 出版物委员会,海军部,通过船舶局,代码 330c