量子误差缓解已被提出,作为通过经典的多个量子电路的经典后处理结果来应对近期量子计算中不必要和不可避免的错误的手段。它以一种不需要或几个其他量子资源的方式来做到这一点,而耐心的方案与大型开销相比。误差缓解导致量子计算小方案的降噪。在这项工作中,我们确定了强大的限制,可以对较大的系统大小有效地“撤消”量子噪声的程度。我们首先提出一个正式的框架,该框架严格封装了大量有意义且实际应用的方案,以减轻量子误差,包括虚拟蒸馏,cli€ord数据回归,零噪声外推和概率误差取消。有了框架,我们的技术贡献是构建对噪声高度敏感的随机电路家族,从某种意义上说,即使在对数log(n)深度下,超越恒定的晶须也可以超过量子噪声,可以超过昂贵地将其输出迅速拼凑到最大混合状态。我们的结果呈指数收紧文献中用于误差的论点,但它们超出了这一点,但它们超越了:通过修改,我们的论点可以应用于量子机器学习的内核估计,或者可以计算出贫瘠的高原出现的深度,这意味着由于噪声而造成的噪声较小,因此在较小的噪声中,比较较小的探索。有一些经典算法在复杂性方面表现出相同的缩放。最后,我们的结果还说,必须对嘈杂的设备进行指数级的次数(在可观察到的轻度孔中的门数)以估计可观察到的期望值。虽然量子硬件中的启用将降低噪声水平,但如果使用错误缓解,则与经典算法相比,这只能导致指数时间算法具有更好的指数,从而对在这种情况下的指数量子加速有很大的障碍。
地图是评估土壤和生态杂质的过程和危害,水文建模以及自然资源和土地管理的重要工具。基于现场调查或航空照片的映射土地形式的传统技术可能是时间和劳动密集型,强调了基于遥感产品的自动或半自动方法的重要性。此外,时间密集的手动标记也可以是主观的,而不是对地形的客观识别。在这里,我们实施了一种客观的方法,该方法将随机的森林机器学习算法应用于一组观察到的地形数据和1M水平分辨率裸露的数字高程模型(DEM),它是从空气中的光检测和范围数据(LIDAR)数据开发的,以快速映射丘陵地面的各种地面地面。地面分类包括高地高原,山脊,凸面,平面斜坡,凹陷坡,溪流通道和山谷底部,横跨俄克拉荷马州东北部俄克拉群岛的Ozark山脉的400公里2丘陵景观。我们使用了4200个地面观测值(每个地形600个)和八个从随机森林算法中的2 m,5 m和10 m分辨率LIDAR DEM得出的地形指数,以开发2 m,5 m和10 m分辨率地分辨率地面地面模型。我们通过比较观察到的地貌与建模地面的地图来测试DEM分辨率在映射地图中的有效性。结果表明,当协变量以2 m的分辨率分辨率为〜89%时,该方法绘制了约84%的观察到的地形,分辨率为10 m。使用这种方法开发的地图图具有多种潜在应用。然而,预测的地图显示,2 m分辨率的协变量在捕获准确的地形边界和小型地面的细节(例如溪流通道和山脊)方面表现更好。与使用空中图像和现场观测值相比,此处介绍的方法大大减少了绘制地图的时间,并允许掺入各种各样的协变量。它可以用于水文建模,自然资源管理,并在丘陵景观中表征土壤地球形过程和危害。
自 1990 年以来,电阻尼特的表示一直基于二维电子态中发生的 QHE 的整数量化电阻平台。这些量化的电阻值为 RHU) = R'(.,JO/i,其中 R H 是量化的霍尔平台电阻 RK。!lQ 是 1990 年推荐的冯·克利青常数值,i 是整数量子数 [1]。在 1980 年发现 QHE 后的最初几年里,Si-MOSFET 和半导体异质结构(最常见的是 GaAs/Al,Ga(1)As)被用于计量表征和比较 [2-4],最近,几家国家计量研究所已经开发和改进了生长半导体 QHE 器件的配方,适用于在相对较高的电流和弱磁场下进行精确的电阻计量 [5, 6],因此该标准更容易获得并且在计量上更有用。11 不是一个简单的过程来生产在量子水平上经过良好量化的器件在源漏(-D)电流为 20 μJ 至 100 μJ 且温度为 T2:14 μJ 时,i = 2 平台在相对较低的磁通量(8 < 9 T)下工作。这要求 GaAs/AlxGa(I-x)As 异质结构中的材料成分难以复制,从而通过杂质故意降低电子迁移率以增加平台宽度,同时保持相对较高的载流子浓度 ['1]。此外,金属触点必须扩散到异质结构的器件层中,并且通常很难使用现代光刻技术获得多个高导电触点。自从使用微机械解理技术 [7] 发现石墨烯以来,已经开发出几种其他相对简单的方法来生产表现出 QHE 平台的碳基 2DEG(二维电子气)器件。单层石墨烯中独特的电子态产生了一些对基础物理来说最重要的特性,其中单粒子能带结构使电子和π都具有相对论狄拉克费米子的特性,例如,最低的Landa能级之间的间隔非常大。对于一些单层石墨烯器件,这有助于扩大i = 2 QHE平台的o(钉扎)[8, 9],并可能导致器件在比传统半导体QHE器件高得多的温度、更高的电流或更低的场下实现良好的量化,以进行精密计量。此外,在暴露表面上直接制造电极允许在各种配置中进行电子传输测量。与异质结构器件(其中2DEG埋在半导体内部)不同,石墨烯器件中的导电通道可以位于衬底的表面上,因此可以使用表面科学技术对其进行微观扫描和表征。通过使用原子力显微镜(AFM)、低能电子显微镜(LEEM)[10]、扫描隧道显微镜/光谱(STM/STS)[11J和拉曼光谱,石墨烯器件可以收集石墨烯中异常QHE状态下详细形态和微观电子结构之间关系的数据。
自 1990 年以来,电阻尼特的表示一直基于二维电子态中发生的 QHE 的整数量化电阻平台。这些量化的电阻值为 RHU) = R'(.,JO/i,其中 R H 是量化的霍尔平台电阻 RK。!lQ 是 1990 年推荐的冯·克利青常数值,i 是整数量子数 [1]。在 1980 年发现 QHE 后的最初几年里,Si-MOSFET 和半导体异质结构(最常见的是 GaAs/Al,Ga(1)As)被用于计量表征和比较 [2-4],最近,几家国家计量研究所已经开发和改进了生长半导体 QHE 器件的配方,适用于在相对较高的电流和弱磁场下进行精确的电阻计量 [5, 6],因此该标准更容易获得并且在计量上更有用。11 不是一个简单的过程来生产在量子水平上经过良好量化的器件在源漏(-D)电流为 20 μJ 至 100 μJ 且温度为 T2:14 μJ 时,i = 2 平台在相对较低的磁通量(8 < 9 T)下工作。这要求 GaAs/AlxGa(I-x)As 异质结构中的材料成分难以复制,从而通过杂质故意降低电子迁移率以增加平台宽度,同时保持相对较高的载流子浓度 ['1]。此外,金属触点必须扩散到异质结构的器件层中,并且通常很难使用现代光刻技术获得多个高导电触点。自从使用微机械解理技术 [7] 发现石墨烯以来,已经开发出几种其他相对简单的方法来生产表现出 QHE 平台的碳基 2DEG(二维电子气)器件。单层石墨烯中独特的电子态产生了一些对基础物理来说最重要的特性,其中单粒子能带结构使电子和π都具有相对论狄拉克费米子的特性,例如,最低的Landa能级之间的间隔非常大。对于一些单层石墨烯器件,这有助于扩大i = 2 QHE平台的o(钉扎)[8, 9],并可能导致器件在比传统半导体QHE器件高得多的温度、更高的电流或更低的场下实现良好的量化,以进行精密计量。此外,在暴露表面上直接制造电极允许在各种配置中进行电子传输测量。与异质结构器件(其中2DEG埋在半导体内部)不同,石墨烯器件中的导电通道可以位于衬底的表面上,因此可以使用表面科学技术对其进行微观扫描和表征。通过使用原子力显微镜(AFM)、低能电子显微镜(LEEM)[10]、扫描隧道显微镜/光谱(STM/STS)[11J和拉曼光谱,石墨烯器件可以收集石墨烯中异常QHE状态下详细形态和微观电子结构之间关系的数据。
目标。本行业评估、战略和路线图 (i) 审查越南农业和自然资源 (ANR) 部门的发展状况;(ii) 记录政府对该部门的优先发展战略;(iii) 总结亚洲开发银行 (ADB) 在发展 ANR 部门方面的最新经验;(iv) 提出一项投资计划,以支持绿色农业结构调整、包容性经济增长、减贫和冠状病毒病 (COVID-19) 恢复。农业、自然资源和农村发展。越南的 ANR 部门是该国减贫努力的重要支柱,占国内生产总值的 16.3%。其在总劳动力中的份额已从 2010 年的 50% 下降到 2018 年的 38%。随着质量保证的改善和该国在全球贸易中的一体化程度的提高,其出口以美元计算有所增加。近年来,农林渔业出口额从 2012 年的 228 亿美元增至 2019 年的 338 亿美元。大米是越南农产品出口的主导产品,2019 年出口量超过 63 亿吨。越南是世界上最大的大米出口国之一,此外还出口咖啡、胡椒、腰果和绿茶。海洋捕捞物种以及人工池塘养殖的鱼虾是重要的国内食物来源,也是出口市场的外汇来源。越南拥有多样化的农业生态系统,从高原和山区到种植主要水稻的相对狭窄的沿海地带。该国被认为是最容易受到气候变化影响的国家之一。为了建造养虾池和生产盐而砍伐沿海保护性红树林造成了相当大的环境破坏。在高地地区,土壤贫瘠、地势险峻以及大面积毁林造成的水土流失增加了额外的发展挑战。过度使用地下水,尤其是用于种植咖啡和果树作物,导致开采率不可持续,地下水位下降。下游用户(城市地区和工业)对水资源的竞争加剧了 ANR 部门面临的挑战。ANR 部门增长的制约因素包括:气候变化影响、生产率低、农村基础设施欠发达、农业用地整合率低、市场联系薄弱、信贷渠道少以及水资源竞争加剧。贫困和低生活水平在偏远山区和少数民族社区仍然普遍存在。由于女性在农业工人中所占比例较高,她们在农业部门就业中收入有限、工人保护较少,因此处于特别不利的地位。政府政策环境。社会经济发展战略(2021-2030 年),该国最重要的指导性政策声明,设想越南成为一个绿色、可持续和现代化的工业化国家。在《经济结构调整总体规划》(2013 年)的背景下,越南寻求扩大规模、实现现代化并提高农业生产的质量和附加值。该总体规划还要求审查和修改土地使用。亚行部门战略。亚行对农业和自然资源部门的战略是通过提高农业效率和竞争力,提高农村生活水平和抵御气候变化和灾害的能力,保持该部门的可持续和包容性增长。因此,亚行为以下方面提供支持:(i) 改善水资源管理;(ii) 为农业的高价值环节开发综合价值链;(iii) 将小农户与市场联系起来;(iv) 继续改革,允许