未列出任何成分。· 可能的暴露途径:食入。吸入。眼睛接触。皮肤接触。· 急性效应(急性毒性、刺激性和腐蚀性):吞咽有害。· 重复剂量毒性:无相关信息。· CMR 效应(致癌性、致突变性和生殖毒性)· 生殖细胞致突变性:根据现有数据,未满足分类标准。· 致癌性:根据现有数据,未满足分类标准。· 生殖毒性:根据现有数据,未满足分类标准。· STOT-单次暴露:根据现有数据,未满足分类标准。· STOT-重复暴露:根据现有数据,未满足分类标准。· 吸入危害:根据现有数据,未满足分类标准。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
高质量扁平无引线 (QFN) 和小外形无引线 (SON) 封装具有紧凑性、成本效益和良好的电气和热性能,广泛应用于移动和汽车行业。然而,在高可靠性行业中使用 QFN 封装的一个挑战是由于引线侧面缺乏一致的焊料圆角形成。因此,在汽车行业中启用 QFN 和 SON 的关键工艺之一是可润湿侧面功能,它能够在 SMT 后组装到印刷电路板 (PCB) 时有效地形成焊料圆角。为了确保组装的印刷电路板符合质量标准,在组装过程中目视检查它们是否有缺陷和异常是必不可少的。本文介绍了一种在引线侧面镀有新型浸锡的可润湿侧面功能。它创造了可焊接的引线侧面,并通过可检测的润湿圆角高度增强了光学表面贴装封装检查。陶瓷板上的保质期研究和可焊性测试证明了满足可靠性标准的能力。板级可靠性 (BLR) 测试表明其性能与非可润湿侧面封装相当。
抽象的翻转芯片互连和3-D包装应用必须利用可靠的无铅焊接接头,以生成高效,高级的微电子设备。与其他方法相比,由于较低的成本和更高的可靠性,通常用于这些应用最常用的焊料合金是snag,通常通过电镀沉积。用于撞击和封盖应用的snag产品的电镀性能和鲁棒性高度取决于此过程中使用的有机添加剂。在这里,将讨论不影响关键要求(例如紧密的Ag%控制,均匀的高度分布和光滑的表面形态)的下一代障碍产品,这些产品将提高焊料电沉积速率。然后对这些镀焊器进行评估,以兼容颠簸,封盖和微型封盖应用。关键词金属化,镀金,焊料,锡丝
摘要:本文介绍了一种使用聚合物纳米片作为纳米粘合剂在聚酰亚胺薄膜上制备铜层的技术。我们采用了两种功能性聚合物纳米片:一种用作粘合层,另一种用作模板层以吸附金纳米粒子,而金纳米粒子则用作化学镀的催化剂。光反应性聚合物纳米片用于增加铜层和聚酰亚胺之间的粘附力。此外,阳离子聚合物纳米片用于吸附用于化学镀铜的金催化剂。应用该技术,化学镀铜牢固地附着在聚酰亚胺薄膜上。通过对聚合物纳米片进行光刻,可以制造微米铜线。使用聚合物纳米片作为粘合剂的工艺不需要对聚酰亚胺基板进行表面改性,并且可以制造微尺度铜线而不会排放有害废物。因此,该技术可用于下一代柔性印刷电路板制造。 [doi:10.1295/polymj.PJ2006099] 关键词 柔性印刷电路板 / 聚合物纳米片 / 化学镀铜 / 纳米粘合剂 /
图5.2。相对电阻与EM测试的时间降解图。图中指出了两种不同的降解行为模式。...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................5.3。分别用于带有双层和三层屏障的样品的t = 275、300、325°C的时间的CDF图和j = 2×10 -6 a/cm 2。.....................................................................................................................................................................................................................................................................................................................................5.4。fib图像显示了(a)早期和(b)晚期失败的双层的下游诱导的空隙,以及(c)早期和(d)晚期失败的三层。虚线箭头指示电子流的方向。................................................................................................ 55 Fig.5.5。在t = 300°C下的双层三层屏障样品的双峰拟合。.................................................................................................. 56 Fig.5.6。Arrhenius图作为分裂A和B的温度的函数。提取早期和晚期失败模式的激活能。....... 58图6.1。tem显示了分裂的典型模具的Cu凹陷深度(a)a,(b)b和(c)c,分别为低,中值和高降低。....................................................................................................................................................................................................................................................................................................................................................... 64图6.2。在M2层的三个拆分中有缺陷的死亡百分比。............................................................................................................................................................................................................................................................................................................................................................................................................... 65图6.3。通过V2M2处的三个分裂的接触电阻。6.4。6.5。6.6。.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................在t = 275、300、325°C分开a的时间的时间(TTF)的CDF图(TTF),J = 2×10 6 A/cm 2。.................................................................................... 67 Fig.来自PFA的EM测试结构的 FIB图像显示了(a)早期和(b)晚期失败的下游诱导的空隙。 ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 使用物理方法在t = 300°C下分裂A至C的双峰拟合。69图 6.7。 MTTF的Arrhenius图作为拆分a的温度的函数。 7.1。 2步(实线)和3步(仪表板线)Cu种子层的沉积功率。 ............................................................................................................ 76 Fig. 7.2。 (a)带有3步和2步Cu种子层的金属线的泄漏电流和(b)板电阻。 ....................................................................................................................................................................................................................................................................................................................... 78FIB图像显示了(a)早期和(b)晚期失败的下游诱导的空隙。...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................使用物理方法在t = 300°C下分裂A至C的双峰拟合。69图6.7。MTTF的Arrhenius图作为拆分a的温度的函数。7.1。2步(实线)和3步(仪表板线)Cu种子层的沉积功率。............................................................................................................ 76 Fig.7.2。(a)带有3步和2步Cu种子层的金属线的泄漏电流和(b)板电阻。....................................................................................................................................................................................................................................................................................................................... 78
摘要:由于已知锂离子电池的快速充电方案导致电池容量的减小,因此需要在充电过程中避免锂电池。本文为电池模块设计了阳极潜在的观察者和无电镀充电方案,以避免模块中所有单元的锂镀层的风险。观察者是使用电化学细胞模型和电舱电池模型设计的,以估计平行连接的电池模块中所有细胞的阳极电位。由于其简单性和低计算负载,观察者在电荷管理系统中易于实现。结果表明,设计的观察者和充电方案可以准确估计模块中所有细胞的阳极电位。在无电镀充电方案中使用了观察者的估计结果。与常规充电方法相比,提出的方案增加了一个额外的阶段,以估算和控制阳极电位,从而降低了在充电过程中锂电池的风险。它还将电池的峰值温度降低了约9.8%,并将整体充电时间降低了18%。
激光消融是一种可扩展的技术,用于通过高精度选择性去除材料来降低电极的有效曲折。应用于≈110μm厚的电极涂层,这项工作着重于理解激光消融对生命开始时电极材料特性的影响,以及在整个周期寿命中,消融通道对细胞性能的协同影响。研究了激光后的激光,晶体学的局部变化,并研究了激光冲击电极区域的形态。表明,飞秒脉冲激光消融可以在受影响区域的界面局部在本地局部造成较小的物质损害来实现高速材料的去除。在6C(10分钟)恒定电流恒定电压电荷到4.2 V期间从1 mAh cm-2提高了非驱动电极的1 mAh cm-2,到消化电极的几乎2 mAh cm-2。该好处归因于增强润湿和降低电极曲折的协同作用。维持超过120个周期的益处,并在拆卸后观察到石墨阳极上的液化降低。最后,与润湿分析结合使用的多物理建模表明,激光消除任何一种电极导致了润湿和速率能力的实质性改善,这表明只能通过仅将石墨阳极涂在两种电极上就可以实现实质性的性能益处。
石墨阳极上的锂镀层会显著降低电池容量、引发内部短路以及加剧锂离子电池的热失控。锂镀层的非侵入式检测方法对于锂离子电池的安全可靠运行至关重要。本研究提出了一种基于物理的伪二维 (P2D) 模型,该模型结合了锂镀层和剥离反应,以描述商用 18650 圆柱形电池在高电流速率和低温下的电化学行为,电池采用石墨和 LiFePO4 (LFP) 电极。
摘要 焊料的润湿性对于实现电子元件和印刷电路板 (PCB) 之间的良好可焊性非常重要。锡 (Sn) 镀层被广泛用于促进焊料在基板上的润湿性。然而,必须考虑足够的锡镀层厚度才能获得良好的润湿性和可焊性。因此,本研究调查了电子引线连接器的锡镀层厚度及其对润湿性和电连接的影响。在电子引线连接器表面应用了两种类型的锡镀层厚度,~3 μm 和 5 μm。研究发现,~3 μm 的薄锡镀层厚度会导致电连接失败,并且焊点润湿性和可焊性不足。5 μm 的较厚锡镀层厚度表现出更好的润湿性和可焊性。此外,电连接也通过了,这意味着较厚的锡镀层厚度提供了良好的焊点建立,从而带来了良好的电连接。还观察到,较厚的锡镀层厚度实现了更好的焊料润湿性。场发射扫描电子显微镜 (FESEM) 的结果表明,对于较薄的锡镀层厚度 (~3 μm),引线连接器表面的金属间化合物 (IMC) 层生长被视为异常,其中 IMC 层被消耗并渗透到锡涂层的表面。这导致薄锡镀层与焊料的可焊性较差,无法形成焊点。本研究的结果有助于更好地理解考虑足够的锡镀层厚度的重要性,以避免锡镀层处的 IMC 消耗,以及更好的润湿性、可焊性和焊点质量,这对于表面贴装技术 (SMT) 尤其适用于电子引线连接器应用。