游戏开发人员为不可玩的角色创建的人工智能是开发完全充实的视频游戏的最重要部分之一。即使该主题是行业的重要组成部分,但它没有足够的讨论,并且关于该主题的文档通常缺乏。本论文的目的是寻找创建一种人工智能的最常见解决方案,该解决方案具有直觉,并帮助玩家沉浸在自己正在玩的游戏中。目标是研究这些解决方案并找出它们的使用方式。
摘要 - 澳大利亚车辆的培训,测试和部署需要现实有效的模拟器。此外,由于不同自主系统中呈现的不同问题之间存在很高的可变性,因此这些模拟器需要易于使用,并且易于修改。为了解决这些问题,我们介绍了Torchdriveim及其基准扩展TorchdriveEnv。TorchdriveEnv是完全在Python中编程的轻质增强学习基准,可以对其进行修改以测试学习车辆行为的许多不同因素,包括不同的运动模型,代理类型和交通控制模式的影响。最重要的是,与许多基于重播的仿真方法不同,TorchdriveEnV与最先进的行为模拟API完全集成。这使用户可以与数据驱动的不可播放的字符(NPC)一起训练和评估驾驶模型,其初始化和驾驶行为是反应性,现实和多样的。我们通过评估培训和验证环境中的常见强化学习基准来说明TorchdriveEnv的效率和简单性。我们的实验表明TorchdriveEnV易于使用,但难以解决。