反作用杆螺母扳手简介....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................8 气动非仪表手枪式螺母扳手.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... .10 带选择器气动非仪表手枪式拧紧扳手. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 气动非仪表直列式拧紧扳手 . . . . . . . . . . . . . . . . . . . . 14 可选设备 . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 .16
反作用杆螺母扳手简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.8 气动非仪表手枪式螺母扳手。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.10 带 Selectork 的气动非仪表手枪式螺母扳手。。。。。。。。。。。。。。。。。。。。。。。。。。。。.11 气动仪表手枪式螺母扳手。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....12 无刷直流直列式螺母扳手 ...................。。。。。。。。。。。。。。。。。。。。。。。。.......13 气动非仪表直列式拧紧扳手 ............................................. 14 选装设备 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.16
摘要——气动技术在工业中的应用受到广泛青睐,因为它具有广泛的可用性和无污染的流体,因此有可能取代工业中的其他系统。在工业机器人领域,很少设计带有气动伺服电机的机械臂,因为对此的研究很少。该技术是一种带反馈的闭环重复控制系统,使其在工业过程中的实施成为可能。由于气动工业机器人很少,本研究旨在设计一个原型,通过运动学的解析对位置进行精确控制并降低气动系统的非线性随机性,这将为所需应用的气动伺服电机的机械调整提供必要的信息以及对传输模拟的解释。本研究提供了一个完全气动和功能齐全的机器人原型的制造模型,为未来应用于工业机器人的气动控制研究开辟了领域。
气动装置 I/P 模块和后续气动放大器用于控制气动执行器。久经考验的 I/P 模块按比例将来自 CPU 的永久电气设定点信号转换为用于调节 3/3 通阀的气动信号。用于加压或减压执行器的空气流量剂量不断调整。因此,可实现出色的控制效果。达到设定点时,3/3 通阀在中间位置关闭,以最大限度地减少空气消耗。气动系统可提供四种版本:用于单作用和双作用执行器,每种版本都具有“故障安全”/“故障冻结”安全功能。“故障安全”安全功能 如果电源发生故障,定位器输出 1 会减压,气动执行器中的复位弹簧会将阀门移至安全位置。如果是“双作用”版本,输出 2 会额外加压。“故障冻结”功能 如果电源发生故障,定位器输出 1(和输出 2,如果适用)会关闭,气动执行器会将阀门锁定在当前位置。如果压缩空气供应电源发生故障,定位器会给执行器减压。
气动压缩工具:气动压缩工具有时称为泵。它们用于治疗急性和慢性淋巴水肿,以激活受影响区域的额外淋巴液体。在急性深静脉血栓形成和炎症性水肿中禁忌使用气动压缩工具。这些工具的各种尺寸都复杂且昂贵。通常,这些工具通过在肢体上施加规则压力或各种程度压力来起作用。可用的压力在0到300 mmHg之间变化。治疗率取决于诊断,但通常在30-60 mmHg之间。总治疗期可能在30分钟至6-8小时之间,具体取决于诊断,患者的情况和使用的工具。(33)。气动压缩工具尚未确定与最佳泵送压力,会话的长度或频率以及治疗必需品有关的指南(24)。
摘要:基于模板和添加剂制造技术已经证明了一些用于创建气动软执行器的制造路线。然而,随着执行器的复杂性和能力继续发展,这些方法的局限性变得越来越明显。其中包括用于设计变化,过程速度和分辨率,材料兼容性和可扩展性的困难,这妨碍了和限制技术的可能功能及其从研究到行业的过渡。这项工作提供了一种具有不同方法的计算机控制,无面罩的制造工艺,可以允许高速,低成本和灵活的气动软软驱动网络的高速创建,包括多主结构。通过定制的制造平台对此进行了研究,该平台提供了计算机控制的局部等离子体处理,以选择性地修改有机硅和聚对苯二甲酸酯(PET)体的化学行为。改变的表面化学促进了表面处理部分之间的选择性键形成,因此,对形成的气动室的设计变化和控制更大。选择性治疗模式允许创建非线性气动室设计,并且显示键合硅结构的强度可促进执行器中的大变形。此外,利用血浆和有机硅之间的不同相互作用,以达到<1 mm的特征大小,并且暴露的治疗速度为20 mm 2。然后制造了两个多物质气动软致动器,以证明平台作为软执行器的自动制造途径的潜力。
1.介绍 BY EPCON 是一种数字式电动气动控制器,用于控制压力、温度、液位等过程变量。它提供所有最新的数字电子控制功能,同时具有气动控制器的可靠性。BY EPCON 由几个主要部分组成,包括数字信号处理器、用于程序/数据存储的闪存 ROM、LCD 显示器、信号处理和看门狗电路、数字信号滤波器、A/D 转换器、控制按钮、RS232C 通信接口(可选)、一对电磁阀及其驱动单元、信号输入/输出端子等。采用 PID 控制算法作为控制软件。BY EPCON 在 110~220V AC(50/60 Hz)或 24V DC 电源下运行。它接受来自标准 4~20 mA 变送器的信号,并提供气动输出以操作隔膜或活塞驱动的控制阀。控制器可容纳最大 60 psig 的输出,以控制气动隔膜或活塞式执行器,而无需使用 I/P 传感器或阀门定位器。BY EPCON 拥有自己的 24 伏直流电源供变送器使用,简化了电源的复杂性并降低了成本。BY EPCON 采用电磁阀代替易受污垢或磨损的小孔径孔口,在高达 60 psig 的压力下提供大量空气输出,以直接操作单作用或双作用气动执行器。由于此功能,BY EPCON 无需使用 I/P 传感器和阀门定位器,从而降低了成本。
• 分配的学分数/工作量:a) 40 个接触小时 b) 3 个美国季度学分 c) 4 个 ECTS 学分 请注意:如果由于新冠疫情,该项目无法在慕尼黑举行,我们将以在线形式提供本课程。课程描述 液压和气动系统目前用于许多应用中。例如,气动系统对于自动化批量生产或车辆悬架和制动系统至关重要。发动机的喷射系统、飞机的控制装置或建筑机械的动力传输就是液压重要性的例子。没有类似的技术可以将如此大的功率(尤其是力或扭矩)传输给执行器。在任何其他传动技术中,都不存在与简单、轻便、强大且坚固的液压缸相媲美的线性操作执行器。液压和气动系统方面的知识和经验是工程设计师必不可少的要素,但大多数本科课程通常不涉及这些内容。本课程将让工程本科生对这些系统及其操作理论有基本的了解,并在具有真实组件的实验室系统中获得一些“动手”经验。使用空气或液体流体传输动力的系统的设计需要特殊技能,并特别关注安全性、可控性和效率。本课程的讲座部分将介绍现代流体动力系统的基础知识,其中包括常见液压和气动应用的概述。我们将探索各种流体动力元件(如泵、电机、气缸和阀门)的设计和分析。将使用适当的分析来强调通过正确确定组件尺寸来设计能够满足或超出设计要求的流体动力系统。将开展一个涉及液压系统设计和布局的短期设计项目。本课程的实验室部分侧重于气动和液压元件的实际“动手”体验。它将包括基于原理图的气动回路的设计和组装、液压油特性的测量、液压元件的测试、泵、泄压阀、流量控制阀和液压缸等简单回路的设计和测试、双执行器液压回路的设计、有无负载控制阀提升负载的比较以及液压缸的速度和位置控制。
压缩空气用途广泛,可用于许多不适合使用电力和液压动力的场合。例如,气动马达可在炎热、潮湿或腐蚀性环境中运行而不会损坏,而气动工具的重量与功率比相对较低,可长时间安全操作,用户不会感到疲劳。压缩空气的应用几乎是无限的,而 Ingersoll-Rand 可帮助将液压或电气过程转换为安全、清洁的气动操作。