JNCC 长期以来一直与合作伙伴合作,支持英国公民科学生物多样性监测计划,收集一系列分类群的数据。合作伙伴包括一系列非政府组织、研究机构、国家自然保护机构和英国政府,共同组成英国陆地证据伙伴关系 (UKTEPoP)。合作伙伴之间相互认可,打破阻碍志愿公民科学家参与生物多样性记录的障碍至关重要,我们的目标是参与和支持鼓励我们的监测计划取得包容性成果的工作。这样做的原因是这项工作可能带来:
摘要 - 在过去几年中,高端移动应用程序处理器(APS)开发了Interposer Package-on-package(POP)技术,并且在过去几年中一直在非常大量的生产中。这是由于其优质包装设计灵活性,可控的包装经(25°C)和高温(260°C)的优势,减少的组装制造周期时间和芯片持久的组装制造供应。迄今为止,层压板基室间的插入器流行已被用于具有非常大量生产的高端移动AP。最近,这种插入器流行设计面临着一些技术限制,包括需要减少顶部和底部路由层厚度,铜(CU)微量线/空间以及下一代移动APS的大小。这些减少可能需要超薄包装Z-Height和高带宽底部和顶部路由层。为了应对这些挑战,已经设计和演示了具有高密度风扇外(HDFO)重新分布层(RDL)路由层的新插入器流行。这是实现具有高带宽和改善信号完整性/功率完整性(SI/PI)路由层的超薄包装Z高,插座式流行结构的计划的一部分。本文将讨论使用HDFO RDL路由层上的插入器流行的包装级特征,以及根据JEDEC进行的Z-Height评估,Z-Height评估,依赖温度依赖的软件包WARPAGE WARPAGE WARPAGE WARPAGE WARPAGE WARPAGE WARPAGE WARPAGE WARPAGE WARPAGE测量测试。
摘要:在本文中,我们通过使用FEM(有限元方法)计算了裸底物和芯片附着的底物的经纱,并比较并分析了芯片附件对翘曲的影响。另外,分析了底物的层厚度对还原经经的影响,并通过Taguchi方法的信号效率比分析了层厚度的条件。根据分析结果,固定芯片时,底物中经纱的方向可能会发生变化。此外,随着包装顶部和底部之间CTE(热膨胀系数)的差异(热膨胀系数)的差异也会降低,并且在加载芯片后包装的刚度会增加。此外,根据对未连接芯片的底物的影响分析,为了减少芯片,为了减少经轴,电路层CU1和CU4的内层首先受到控制,然后集中在焊料底部的焊料厚度上,以及在Cu1和Cu2之间的预钻层的厚度。
摘要/工作范围 本文介绍了 Amkor Technology、Panasonic Factory Solutions 和 Spansion 在封装层叠 (PoP) 板级可靠性 (BLR) 领域进行的三方联合研究的结果。[BLR 在行业内也称为二级或焊点可靠性]。虽然 PoP 在手持便携式电子应用中呈指数级增长,但正如 iSuppli [1] 和其他公司所报告的那样,迄今为止,PoP BLR 数据都是针对客户特定的,无法在行业发布。存在大量公司内部和行业数据,可帮助优化 0.5mm 间距、无铅细间距 BGA (FBGA) 或芯片级封装 (CSP) 中的 BLR 性能设计。此外,正如 Scanlan、Syed、Sethuraman 等人 [2] 所报告的那样,0.4mm 间距 CSP 中出现了新的工作。但是,针对从顶部到底部的 PoP - BGA 接口可靠性的行业数据对于设计人员规划新的 PoP 应用或配置至关重要。此外,需要数据来验证当前底部 0.5mm 间距 BGA 到主板接口无铅可靠性性能的最佳实践是否仍然适用于 PoP 堆叠结构。本次合作研究的目标是:• 比较流行的无铅球合金和 BGA 基板焊盘涂层,以确定哪种焊点和 BGA 焊盘涂层结构对 BGA 接口表现出最佳的 BLR 成本/性能平衡。• 建立合作的 PoP 供应链关系,以生成适用的 BLR 数据并使其广泛提供给行业。• 确保生成的 PoP BLR 数据是全面的 - 基于对顶部、底部封装和最终 PWB 组装的大批量设计和可制造性考虑。