背景:甲状腺激素(Th)是大脑发育和功能所必需的。浸泡9个大脑和脊髓的脑脊液(CSF)含有自由或经甲状腺素(TTR)结合。中枢神经10系统中的紧密甲状腺激素水平调节对于控制神经发生,髓鞘形成和突触发生的发育基因表达至关重要。这一综合的11个功能强调了开发精确和可靠的方法评估CSF中TH水平的重要性。方法:我们报告了12种基于LC-MS的方法,用于测量啮齿动物CSF和血清中的甲状腺激素,适用于新鲜和冷冻样品。13结果:我们发现怀孕大坝与非妊娠成年人以及胚胎与成人CSF的CSF甲状腺激素有着明显的差异。14此外,靶向的LC-MS代谢分析发现了这些人群中CSF中的不同中央碳代谢。结论:相关代谢途径的第15次检测和代谢物分析开放了对CSF甲状腺激素16的严格研究的新途径,并将为正常发育过程中CSF的代谢改变的未来研究提供信息。17 18
•信托将为整个信托的学校领导者提供支持和挑战,以确保他们清楚期望并提供我们员工改善和成功所需的支持和资源。•一个清晰而信息丰富的招聘包有效地促进了成为信托团队的一部分的好处。•信托为每个员工提供清晰准确的职位描述和合同,支持他们对角色,责任和问责制水平的理解。•新员工或具有新角色的人员已经实施了强大的归纳过程,使他们能够实现强大的开始并迅速对组织产生积极影响。•领导者有定期正式和非正式的机会收到员工的反馈(与信托人力资源和利益相关者互动策略在线)。•利益相关者的敬业度计划清楚地证明了如何,何时以及向谁报告他们的行动,这些行为是根据员工对员工和其他利益相关者的反馈而报告的。
摘要:调节各向异性声子极地(PHP)可以打开红外纳米光子学的新途径。通过极化杂交的有希望的PHP色散工程已通过将门控石墨烯与单层α -Moo 3耦合来证明。然而,与门依赖性杂交调制的基础机制仍然难以捉摸。在这里,使用IR纳米光谱成像,我们证明了光学响应函数的主动调节,并在测量杂交等离激元 - Phonon -Polaritons(HPPPS)的波长,振幅和耗散速率的栅极依赖性中进行了量化。有趣的是,尽管石墨烯掺杂导致HPPP波长,振幅和耗散速率的单调增加表明从最初的反相关减少到相关增加的过渡。我们将这种行为归因于HPPP复合动量的栅极相关组件的复杂相互作用。我们的结果为综合α -moo 3纳米素体设备的积极偏振子控制奠定了基础。关键字:栅极 - 调整,混合等离子体 - 声子极化子,扭曲的α-MOO 3,分散,s -snom
摘要:本文提出了一种基于双SPP耦合用于亚波长限制的长距离混合波导。混合波导由金属基圆柱形混合波导和银纳米线组成。波导结构中存在两个耦合区,增强了模式耦合。强模式耦合使波导既表现出较小的有效模式面积(0.01),又表现出极长的传输长度(700 μm),波导的品质因数(FOM)可高达4000。此外,波导的横截面积仅为500nm×500nm,允许在亚波长范围内进行光学操作,有助于提高光电器件的小型化。混合波导的优异特性使其在光电集成系统中具有潜在的应用价值。
摘要。由于量子力学在物理教育研究中取得了令人鼓舞的成果,通过双态系统进行量子力学的教学/学习正在中学不断普及。一种可能性是使用光子的偏振态。本文报告了物理教师教育中基于偏振的量子力学介绍。一种广泛使用的学校材料为教师培训生的未来工作做好准备,同时也提高了他们的概念知识。这部分包括仅使用中学数学的统计计算和仅使用实数的不确定关系的新公式。第二步是使用实二维向量和矩阵准备量子力学的形式。考虑到学生可能不会学习复杂的线性代数,我们提供了一种通过圆偏振介绍双态系统完整形式的新方法,提供了对复杂量子态的逐步探索。这指出了通过物理示例使用复杂线性代数的优势,提供了接触高级量子物理和量子计算元素的机会,同时深化了中学材料的物理背景。
,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利
在全球政治议程上,气候变化的兴起与美国政治中党派两极分化的增长相吻合,并且在许多方面,它们的轨迹相互反映。30年前,当气候危机开始引起政治关注时,共和党人和民主党人以相似的兴趣和关注水平做出了回应。今天,党派分裂压倒了气候变化政治和环境政治的所有其他方面(Egan,Konisky和Mullin 2022; Egan and Mullin 2017)。两极分化通常与美国的政策惯性有关。与该系统的许多否决点相结合的政党力量的紧密平衡要求两党协议制定并持久。因此,数十年来,该国的深度党派气候分裂在联邦一级和大多数州都产生了僵局。然而,两极分化的阴影正在出现三个发展,这是对气候变化采取有意义行动的机会。首先,随着极化变得更加严重和系统性,两国在气候变化问题上变得更加内部具有内在性。对于示威者来说,这导致了党议程的气候提升,并有了新发现的意愿,即在抵抗气候变化方面消耗政治资本。第二,已经进行的可再生能源过渡的地理位置已经消除了状态活动活动在限制清洁能源扩张中的限制。第三,气候变化适应的政治有可能以偏离气候变化的两极分化政治的方式展开。即使共和党领导的州正在逐步追溯可再生能源支持和制定政策以支撑化石燃料,但许多领导清洁能源的州都受到共和党的控制,部分原因是这些地方更有助于生产风能和太阳能。地理再次发挥了作用,因为预计气候变化的影响(尤其是洪水和野火)被预计会对共和党选民产生不成比例的影响,因此可能会产生这些党派人士对解决这些问题的政策的需求。
TPS7H4001-SP 和 TPS7H4003-SEP 是集成 FET 的高电流 (18 A) 降压转换器,其主要特性是能够并联最多 4 个相位相差 90 度的器件,而无需外部时钟,旨在满足核心轨道上对更高电流日益增长的需求。0.6 V 基准电压使它们能够满足此轨道通常的低电压要求。TPS50601A-SP 是一款较小的 6 A 高效降压转换器,拥有十多年的实际使用经验,用于为许多辅助轨道供电。封装兼容的 TPS7H4002-SP 也可用于为辅助轨道供电,因为它在架构上与 TPS50601A-SP 非常相似,但电流限制较低,适合较小的电感器尺寸。对于类似的 6 A 抗辐射设计,TPS7H4010-SEP 在 4×6 mm WQFN 封装中提供了极其紧凑的设计,并且是 32 V in 下空间级开关稳压器中最宽的 V 值。
离子阱系统具有较长的相干时间和较强的离子间相互作用,可实现高保真度的双量子比特门,是一种很有前途的量子信息处理方式 [1]。目前,大多数实现都由复杂的自由空间光学系统组成,其较大的尺寸以及对振动和漂移的敏感性会限制离子阵列的保真度和可寻址性,从而阻碍向大量量子比特的扩展。最近,基于集成光子学的设备和系统已被证明是解决这些挑战的一种途径 [2,3]。到目前为止,这些先前的集成演示仅限于使用单一线性偏振光(特别是横向电场 (TE))进行操作,该偏振光名义上与离子阱芯片表面平行。然而,不同的偏振对于实现先进的离子阱系统的许多操作至关重要 [4],这引起了人们对开发偏振多样化发射器的兴趣 [5,6]。例如,基于集成光子学的架构涉及 TE 和横磁 (TM) 偏振光(如图 1a 中的配置),对于实现先进的离子冷却方案必不可少,这种方案可在几种非简并陷阱振动模式下提供亚多普勒温度,例如偏振梯度冷却和电磁诱导透明冷却 [4]。在本文中,我们设计并通过实验演示了一对集成的 TE 和 TM 发射光栅,工作波长为 422 nm,对应于 88 Sr + 离子的 5 2 S 1/2 到 5 2 P 1/2 跃迁,这是离子控制的关键跃迁。我们实施了一种自定义的优化设计算法,以实现发射单向聚焦光束的双层、切趾和曲面光栅,实验测量的光斑尺寸为 TE 光栅 7.6 μm × 4.3 μm,TM 光栅 5.0 μm × 3.6 μm,目标离子高度距芯片表面 50 μm。据我们所知,这项工作代表了用于捕获离子系统的集成 TM 发射光栅的首次开发,因此,它为基于集成光子学的捕获离子量子系统涉及多个极化的高级操作奠定了基础。
针对水下无人车辆(UUV)的自主导航能力的要求,提出了一种基于Snell窗口内极化模式的水下导航的新型仿生方法。受到生物的启发,极化导航是一种无卫星的导航计划,并且有很大的潜力在水中使用。但是,由于水下环境复杂,是否可以实现UUV两极化导航令人怀疑。为了说明水下极化导航的可行性,我们首先建立了水下极化模式的模型,以证明Snell窗口内的水下极化模式的稳定性和可预测性。然后,我们基于开发的极化信息检测设备进行水下标题确定的静态和动态实验。最后,我们获得了水下极化模式,并在不同的水深度进行跟踪实验。水下极化模式的实验结果与模拟一致,这证明了所提出的模型的正确性。在5 m的水深下,跟踪实验的平均角度和位置误差分别为14.3508°和4.0812 m。可以说明水下两极化导航是可以实现的,精度可以满足UUV的实时导航要求。这项研究促进了水下导航能力和海洋设备的发展。