这里介绍的研究结果是 1998 年由加州州立理工大学 (Cal Poly) 灌溉培训和研究中心 (ITRC) 代表美国垦务局 (USBR) 中太平洋地区在各种水力条件下测试水位传感器而开始的一系列研究的延续。本报告旨在补充 1999 年的原始报告,题为“水位传感器和数据记录器测试和演示”(ITRC 报告编号R-01-010),该报告详细描述了测试过程并介绍了前 17 个测试传感器的详细结果。1999 年的报告可通过 ITRC 网站 ( www.itrc.org ) 访问。本报告总结的 2003 年研究包括对五个新传感器的测试。
卵巢癌(OC)是最常见的妇科恶性肿瘤之一。OC的预后最差和死亡率最高。根据美国癌症协会(Siegel等,2022年)的数据,仅在2022年,仅在2022年就估计了超过19,000例新的OC和12,000例死亡。oc是女性中第七种最常见的恶性肿瘤类型,也是全球死亡率的第八个原因(Gaona-Luviano等,2020)。早期患者的预后更好,但大多数患者在晚期阶段被诊断出来。上皮OC在晚期患者中约为80%。手术伪造和基于铂的化学疗法(例如卡铂和紫杉醇)是一线治疗方案。然而,这些治疗的长期结果并不令人满意。DNA损伤修复缺陷存在于各种肿瘤细胞中。这是肿瘤起始和肿瘤疗法的机制之一。由BRCA基因编码的蛋白质与通过同源重组(HR)途径的DNA双链损伤有关。乳腺癌1/2基因(BRCA1/2)以及其他参与同源重组修复(HRR)基因突变或功能可能会导致同源重组率(HRD),从而导致细胞中的恶性转化(Chiappa等,2021)。parpi已成为OC的分子靶向治疗策略。研究表明,Parpis可以显着改善OC的自由生存(PFS)和总生存率(OS),尤其是在新诊断和通过“综合杀伤力”机制,聚(ADP-核糖)聚合酶抑制剂(PARPI)阻止HRD肿瘤细胞中DNA单链断裂的修复,积累了大量DNA双链链破裂(DSB)(DSB),导致肿瘤细胞的死亡,从而表现出肿瘤的死亡,从而表现出抗肿瘤的死亡。 Al。,2021)。
摘要:在环聚(乙烷氧化乙烷)(PEO)的大分子的融化中,研究了质子和依特子的自旋松弛,其分子质量从5280到96,000 DA不等。比较NMR自旋 - 晶格松弛速率与相似分子质量的线性PEO熔体的相应速率的频率分散率表明,相邻环大分子的相互互穿的显着相互互穿,尽管不如其线性对应物相比。与中间人自旋回波(NSE)的结果一致的时间间隔,在调查的频率间隔中,环段的平均值位移在8×10-9至2×10-5 s的相对应的频率间隔中取决于⟨r n 2(t)⟩∝ t 0.39。在环大分子中的归一化Hahn回波信号的衰减在实验误差中是指数的,与他们的线性同行不同,在其线性同行中,发现强烈的非义务行为。这表明NMR看到的环段的动态异质性不存在与线性类似物中末端段有关的影响。■简介
1科学技术学院,西尔西亚大学西尔西亚大学,萨尔科纳9,40-007 Katowice,波兰; Barbara.hachula@us.edu.pl 2物理研究所,科学技术学院,西里西亚大学,卡托维奇大学,波兰库索夫41-500pułkupiechoty 1a,波兰乔尔索夫41-500; taoufik.lamrani@us.edu.pl(T.L.); magdalena.tarnacka@us.edu.pl(M.T。); karolina.jurkiewicz@us.edu.pl(K.J.); patryk.ziola@us.edu.pl(P.Z.); anna.mrozek-wilczkiewicz@us.edu.pl(A.M.-W。); kamil.kaminski@us.edu.pl(k.k.)3 Biotechnology Center,Silesian技术大学,Boleslawa Krzywoustgo 8,44-100 Gliwice,Poland 4 44-100 44-100,44-100,44-100,44-100,44-100,44-100,44-100,44-100 Poland of Sosnowiec的药物学和植物学系,索斯诺维奇索斯诺伊奇索斯诺伊科克医科大学的索斯诺瓦尔索斯诺伊斯西亚氏病学院。 ekaminska@sum.edu.pl *通信:luiza.orszulak@us.edu.pl
癌症是全球公认的主要健康危害之一,也是全球八分之一死亡病例的病因。化疗被认为是癌症的主要治疗方法,但由于其即将出现的耐药性而受到重大限制。我们的重点应该是提供有效且持久的治疗程序,而不会损害癌症患者的寿命和生活质量。对研究人员和科学家来说,对化疗药物的耐药性和设计有效的药物输送系统以克服癌症治疗失败仍然是一项具有挑战性的任务。纳米粒子 (NPs) 因其更高的生物利用度、溶解度和保留时间而被广泛用于提高治疗指数。除此之外,一些研究已经使用聚丁基氰基丙烯酸酯 (PBCA) 作为用于治疗癌症的药物输送目的的最常见载体之一。PBCA 及其共聚物在设计具有所需特性的 NPs 方面非常重要,例如生物相容性、生物降解性、较小的粒径、独特的表面特性、容易的药物释放和靶向特异性。在本文中。我们的目的是回顾和总结使用 PBCA 纳米粒子作为有效药物载体治疗不同癌症的文献。
摘要:专门为增材制造而配制的材料创新备受关注,可以为设计下一代设备和工程应用的经济高效的智能材料创造新的机会。然而,先进的分子和纳米结构系统通常无法集成到 3D 可打印材料中,从而限制了它们的技术可转移性。在某些情况下,可以使用离子性质的聚合物大分子(例如聚合物离子液体 (PIL))来克服这一挑战。由于它们的可调性、分子组成多样性和大分子结构,它们表现出稳定分子和纳米结构材料的卓越能力。基于 3D 可打印 PIL 的配方所产生的技术代表了一系列尚未开发的潜在应用,包括光电、抗菌、催化、光活性、导电和氧化还原应用。
因为纤维素和PET在化学上是完全不同的,因此对这两种聚合物的分析是通过溶液 - 气相色谱法分析是一项简单的任务。当材料(尤其是一个太大的分子而无法通过GC分析)的材料被毒死时,它会分解成较小的分子,该分子保留了原始聚合物的化学信息。这些较小的分子可以通过GC分析,产生代表父材料诊断片段的峰的模式。图1显示了从加热至750°C的棉线产生的热解色谱图(图片)15秒。当纤维素热降解时,它会产生水和二氧化碳,以及许多其他有机材料,包括醛和酮。PET降解以产生芳香剂,包括苯,苯甲酸和聚合物的低聚片段。图2显示了宠物服装线的图2,其中苯甲酸在大约11分钟时洗脱。棉花和聚酯纤维的混合物将在图1和2中显示在同一灵性图中的两个峰,因为每个聚合物都基本上是独立的。
此产品包含开源软件。,您可以收到适用产品或软件的分销日期后的三(3)年的开源软件,费用不超过运输或向您分发软件的HP费用。要接收软件信息以及本产品中使用的开源软件代码,请通过电子邮件与HP联系,网址为ipgoopensourceinfo@hp.com。
一种液体排斥表面,即光滑液体注入多孔表面(SLIPS),通过动态液体/液体/蒸汽接触线运动来排斥液体。[6] 所需的光滑液体必须与接触的液体介质不混溶且不会被其浸出,以避免润滑剂损失和污染。确保此类涂层的长期坚固性及其润湿性能仍然具有挑战性。[7] 因此,需要其他方法来创建具有良好液体排斥性的表面。提出了一种替代策略,即将柔性大分子刷(如 PDMS 和全氟聚醚)共价连接到光滑表面上以排斥液体。[8] 这个想法是,柔性大分子的高流动性使它们能够作为具有广泛表面张力的液体的液体状润滑层。[8c] 由于与表面的共价连接,这些分子结构不会被接触液体溶解或取代。具体而言,涂覆有PDMS刷的表面表现出优异的耐高温处理、光降解甚至刮擦性能。[8a,9] 此外,由于涂层只有几纳米厚,它们是透明的,不影响涂层表面的外观,对导热性影响也很小。PDMS刷的制备可以追溯到1970年,当时Vermeulen等人通过气相反应16小时在玻璃表面沉积了低液体粘附性的PDMS刷层。[10] 然而,从表面接枝聚合物通常基于复杂且耗时的制备程序,限制了它们在实际应用中的使用。McCarthy等人系统地研究了在表面制造PDMS刷的新策略。[11] 他们提出使用二甲基二甲氧基硅烷(DMDMS)作为单体,在硫酸作为催化剂的情况下聚合PDMS刷。 [8a] 用大量溶剂冲洗表面以去除残留的低聚物和酸,将反应溶液(包括 DMDMS、硫酸和异丙醇)干燥一段时间后,在硅(或玻璃)表面形成具有低液体粘附性的 PDMS 刷。与 McCarthy 的方法相比,我们开发了一种更简单的方法,无需催化剂即可将 PDMS 刷接枝到表面上。此外,我们还表征了 PDMS 刷在胶带剥离、超声处理、滴落滑动腐蚀、加热、紫外线降解、酸腐蚀等条件下的稳定性。McCarthy 等人仅研究了在 100°C 下加热的影响。
摘要:多孔膜技术因其对绿色化学和可持续发展的显着贡献而在分离和生物学领域引起了极大的关注。由多乳酸(PLA)制造的多孔膜具有许多优势,包括低相对密度,高比表面积,生物降解性和出色的生物相容性。结果,它们在各种应用中表现出有希望的前景,例如石油 - 水分离,组织工程和药物释放。本文概述了使用静电纺丝,呼吸图和相分离方法在制造PLA膜方面的最新研究进步。首先,从孔形成的角度阐明了每种方法的原理。讨论和汇总相关参数与孔结构之间的相关性,随后对每种方法的优点和局限性进行了比较分析。随后,本文介绍了多孔PLA膜在组织工程,油水分离和其他领域中的多种应用。这些膜面临的当前挑战包括机械强度不足,生产效率有限以及孔结构控制的复杂性。相应地提供了增强和未来前景的建议。