图2。PSH受试者的识别过程流程图。使用XGBoost算法和不健康的标签信息,使用Knhanes数据库训练二进制分类模型。使用SHAP算法解释了受过训练的模型。通过将HSSH算法应用于分析的形状值,PSH方向(从性状的平均值左右)确定。接下来,代表与性状均值的距离的PSH强度由用户设置的超参数定义。在图中,三个PSH强度值显示为示例,对应于三个不同的高参数值。最后,计算了标记为每个性状的红点的PSH值。用于塑造分析的框,HSSH算法和PSH值连接到其相应的带有虚线的框,以进行详细说明。在图中,提供了DBP为例。
•主要候选人PLG-101已成功达到了所有临床前里程碑,并正在前进到临床开发,I期计划于2025年末。•科学顾问委员会正在国际扩张。•A系列A的计划在融资后完成。巴黎,2024年11月8日 - 专门从事心脏免疫学的法国生物技术公司Polygon Therapeutics自豪地宣布,在开发其创新的生物药物旨在治疗急性心血管疾病方面取得了重大进步。目的是在2025年开始临床试验,该公司正在迅速加速其研发和制造业,以使其新型疗法更接近患者。通过全面的体外和体内研究,Polygon Therapeutics迈向临床试验的进步已成功测试并验证了其铅治疗候选者。这些有希望的结果为下一个关键阶段奠定了基础:人类的临床试验。该公司现在正在最终确定制造这种一类药物所需的规模化流程,以确保生产已准备好即将进行试验。 “我们的主要候选人PLG-101已经通过了临床前研究中的所有里程碑,现在我们专注于迅速发展急性心肌梗塞的临床发展。” “我们的急性心脏病学修改方法旨在影响中期后果,例如12个月时死亡率10%。董事会将在指导公司的临床战略和全球扩张工作中发挥关键作用。2025将是一个关键的一年,因为在该领域最近交易后,我们对我们的定位产生了重新兴趣。”通过国际委员会为这一加速做准备的战略加强,多边形治疗方法通过组建了著名的国际心血管医学专家委员会来增强其治理。成员特别包括:
摘要:一些研究表明,植物提取物和益生菌的组合可能是治疗2型糖尿病(T2DM)的更好方法,而不是单个干预措施。但是,在这方面,相对较少的相关报告仍然相对较少。因此,本研究旨在研究sibiricum saponin(PSS)和乳酸细菌(LAB)组合的治疗是否可以更好地管理T2DM。和组合的抗糖尿病机制是从葡萄糖代谢,微生物组和代谢组的角度研究的。结果表明,PSS+LAB可以更好地提高FBG水平,胰岛素敏感性,脂质代谢障碍和肝功能。蛋白质分析表明,PSS+LAB治疗显着增加了T2DM小鼠肝脏中P-PI3K/PI3K,P-AKT/AKT,GLUT2,IRS2和GSK-3β的表达,同时抑制FOXO1的表达。这种组合对肠道菌群的组成和丰度进行了积极调节。代谢组分析表明,与仅PSS治疗相比,该组合治疗的肠道微生物群代谢产物的变化更多。实验室+PSS对肠道菌群的改变导致丙氨酸,天冬氨酸和葡萄糖代谢途径的显着变化。这项研究可能为植物提取物和益生菌在T2DM的管理中的联合应用提供理论基础。
这项研究的重点是越南多属性的根部的抗炎活性引导的分馏,从而分离了十种化合物(1-10)。这些化合物被鉴定为转染色质(1),甲基原始培养地(2),甲基甲基甲酯(3),儿茶素(4),Epicatechin(5),4,6-二羟基-2- O- - (β-d- d-二甲基吡喃糖基)(β-d- d-二甲基苯基)乙酸(6)乙酸(6),quercetin(7),quercetin(7),quercitin(7),quercitin(7),quercitin(7),quercitin(7),quercitin(7),Apigin(7),Apigin(7),Apigin(7)),(7)),(7),含量(7),含量(7)和Tricin(10)。首次从多氯菌中分离出2、3和6的化合物。对巨噬细胞RAW264.7细胞中脂多糖(LPS)诱导的一氧化氮(NO)产生的所有分离化合物进行了测试,以评估其抗炎潜力。体外结果表明,化合物7-9表现出明显的无生产抑制作用,IC 50值分别为12.0±0.8、17.8±0.6和7.6±0.3μm。n(g) - 共甲基L-精氨酸(L-NMMA),一种阳性抑制剂,也有效降低了LPS诱导的NO产生,IC 50值为22.1±0.1μm。这些发现表明,从多氯疟原虫中分离出的7-9化合物有望进一步研究和开发抗炎剂。
对光的精确空间,时间和/或光谱控制的要求对于许多尖端的科学应用至关重要Mightex的市场领先的多边形图案化照明器使生物科学家能够选择性地照亮具有不同波长光的多个细胞或亚细胞靶标。多边形整合了先进的数字微龙(DMD)技术和高功率光源,以提供具有衍射限量分辨率的高强度,高均匀的照明模式。使用用户友好的软件和硬件操作,多边形为需要精确靶向刺激的实验提供了优化的系统。由于数组中的每个镜子都是可寻址的,因此用户可以同时照亮大小尺寸的多个斑点,具体取决于使用的显微镜目标。用户还可以控制一组镜子,以任何具有很高分辨率的自定义定义,独特形状的光。
多花黄精是百合科黄精属多年生草本植物,具有重要的药用和营养价值。在我国,该物种是传统的药食同源植物,应用历史悠久,受到人们的广泛赞赏。然而,随着对药材需求的不断增长,过度采伐导致野生资源枯竭和遗传侵蚀的风险。加之品种混乱栽培和优质种质资源的缺乏,导致药材质量参差不齐。因此,迫切需要对该物种进行遗传多样性评估,制定完善的保护计划。本研究利用简单序列重复(SSR)分子标记技术,评估了从中国7个地区采集的96个样品的遗传多样性和种群结构。本研究利用10个多态性SSR标记共检测到60个等位基因(Na),平均每个位点产生6.0个等位基因,多态信息含量(PIC)值介于0.3396~0.8794之间,平均值为0.6430,有效等位基因数(Ne)平均值为2.761,Shannon信息指数(I)平均值为1.196。居群结构分析表明,在分子水平上可将多色黄精种质划分为3个亚居群(JZ、QY、JD),与之前根据植物个体表型性状划分的亚类相对应。分子变异分析(AMOVA)表明,74%的遗传变异发生在不同地区居群内的个体之间。对96个种质样品进行系统发育分析, 将其分为3个主要种群, 其中QY和JD亚种群聚集程度较大, 这可能与它们所处的山区分布及当地气候环境有关. 遗传分化系数(Fst)值较低, 为0.065, 表明种群分化程度较低. JZ种群与另外两个种群(QY和JD)的遗传分化系数(Fst)比值明显高于QY和JD种群之间的比值. 基于聚类分析
更改。[1]这需要将太阳能电池的生产提高到Terawatt量表[2],同时降低生产成本。激光处理已成为生产太阳能电池的估计工具。[3 - 5]目前,它主要用于生产钝化发射极后细胞(PERC)的激光接触开口(LCO)过程。[6]由于有限的可用性,银消耗是大规模制造的挑战。[7]未来的无银方法,例如电镀[8]或铝制金属,[9]也需要激光开口。在大多数应用中,激光消融过程仅需很少的消耗品。因此,对LCO系统的所有权成本(COO)的主要贡献包括收购,劳动力和方面的成本,其成本超过75%。[10]因此,增加吞吐量是降低每个细胞处理成本的非常有效的方法。对于诸如化学批处理处理之类的前端过程,对于晶圆尺寸M10(182毫米),晶圆吞吐量预计将从10 200增加到16 700 wph。[6]这增加了70%以上。对于激光过程,例如激光掺杂的选择性发射极(LDSE)和LCO,预计吞吐量增益仅为约7000至10 000 wph,即约为42%。[6]这种错误匹配也是由于以下事实:基于批处理的过程(例如湿化学碱性纹理或炉子扩散和氧化)可以通过增加批处理大小来有效地扩展。[11]
N 元关系知识库 (KB) 嵌入旨在将二进制和超二进制事实同时映射到低维向量空间中。现有方法通常将 n 元关系事实分解为子元组,并且通常在欧几里得空间中对 n 元关系知识库进行建模。然而,n 元关系事实在语义和结构上是完整的;分解会破坏语义和结构的完整性。此外,与二进制关系知识库相比,n 元知识库具有更丰富和复杂的层次结构,这些结构无法在欧几里得空间中很好地表达。针对这些问题,我们提出了一个陀螺多边形嵌入框架来实现 n 元事实完整性保持和层次结构捕获,称为 PolygonE。具体而言,n 元关系事实被建模为双曲空间中的陀螺多边形,其中我们将事实中的实体表示为陀螺多边形的顶点,将关系表示为实体移位操作。重要的是,我们设计了一种基于顶点陀螺中心测地线的事实可信度测量策略,以优化关系调整后的陀螺多边形。实验结果表明,PolygonE 在所有基准数据集上都表现出 SOTA 性能,并且在二进制数据上具有良好的泛化能力。最后,我们还可视化了嵌入,以帮助理解 PolygonE 对层次结构的认识。
我们提供了一种新方法,用于在给定的地理数据集中检测多边形组并为每个组计算代表性多边形。此任务与MAP概括相关,其目的是从给定的地图中得出较少详细的地图。按照经典的方法,我们通过将输入多边形与一组三角形合并,从一个约束的Delaunay三角剖分中选择输入多边形,来定义输出多边形。我们方法的创新是通过解决双晶格优化问题来计算三角形的选择。一方面,我们旨在最大程度地减少输出多边形的总面积,但另一方面,我们的目的是最大程度地减少其总周长。我们将这两个目标结合在一起,并研究自然出现的两个计算问题。在第一个问题中,平衡两个目标的参数是固定的,目的是计算单个最佳解决方案。在第二个问题中,目的是为参数的每个可能值计算包含最佳解决方案的集合。我们基于计算适当定义的图表的最小切割而提出了这些问题的有效算法。此外,我们展示了如何使用几乎没有解决方案近似第二个问题的结果集。在实验评估中,我们最终表明该方法能够从与参考解决方案相似的足迹中得出结算区域。