概要:生命活动,例如呼吸,是通过细胞、组织和器官的持续形状调节来完成的。开发具有形状变形能力的智能材料是迈向类生命系统和可穿戴电子设备、软体机器人和仿生执行器等新兴技术的关键一步。从细胞中汲取灵感,人们组装了智能囊泡系统来模拟生物形状的调节。这将有助于理解细胞形状的适应性,并指导具有形状变形能力的智能材料的设计。由两亲性分子组装的聚合物囊泡就是一个卓越的囊泡系统的例子。其化学多功能性、物理稳定性和表面功能性使其有望应用于纳米医学、纳米反应器和仿生系统。然而,由于聚合物链的低流动性和囊泡膜的低渗透性导致能量分布不均匀,因此很难驱动聚合物囊泡脱离平衡态来诱导形状转变。过去几十年来,大量的研究开发了各种驱动形状转变的方法,包括透析、化学添加、温度变化、聚合、气体交换等。如今,聚合物囊泡可以被设计成各种非球形形状。尽管取得了令人瞩目的进展,但目前关于聚合物囊泡形状转变的研究大多仍处于反复试验阶段。预测和编程控制聚合物囊泡的形状转变是一项巨大的挑战。深入了解聚合物囊泡的变形路径将有助于从反复试验阶段过渡到计算阶段。本文介绍了聚合物囊泡形状转变的最新进展。为了进行深入分析,我们将聚合物囊泡的形状转变分为基本变形和耦合变形。首先,我们讨论聚合物囊泡的基本变形,重点关注两种变形路径:扁圆形路径和扁长圆形路径。并介绍了触发不同变形路径的策略。其次,我们探讨了两种变形途径选择性的起源以及控制这种选择性的策略。第三,我们探讨了聚合物囊泡的耦合变形,重点关注两种基本变形途径的切换和耦合。最后,我们分析了聚合物囊泡形状转变的挑战与机遇。我们设想,对变形途径的系统理解将推动聚合物囊泡形状转变从反复试验阶段进入计算阶段。这将使我们能够预测纳米颗粒在血液和间质组织等复杂环境中的变形行为,并最终获得人造应用所需的先进结构。
这个特刊“ 3D印刷聚合物材料”旨在彰显这个快速发展的领域的最新进步和挑战。3D打印的聚合物组件在包括医疗保健,航空航天和消费品在内的各种行业中变得越来越重要。该问题寻求贡献,这些贡献会深入到针对3D打印技术量身定制的聚合物合成,表征和应用。兴趣的主题范围从3D打印及其生物医学应用的新聚合物混合物到处理优化和可持续性考虑因素。此问题旨在作为研究人员和工程师共享创新的跨学科平台,从而在3D打印聚合物材料的3D打印中进一步促进。欢迎您在以下链接上提交论文:https://www.mdpi.com/journal/polymers/polymers/3d聚合物材料的打印(助理编辑:robin.luo@mdpi.com) - PORYMER 3D印刷 - 生物医学应用 - 流程优化 - 可持续性 - 可持续性 - 先进的印刷技术 - 多i -diveiquice -dift
DNA聚合酶θ(polθ)是在动物和植物中广泛保守的DNA修复酶。polθ使用短DNA序列同源性通过theta介导的末端连接来启动双链断裂的修复。POLθ的DNA聚合酶结构域位于C末端,并通过中央接头连接到N端DNA解旋酶 - 样域。polθ对于在发育过程中维持受损的基因组维护至关重要,保护DNA免受广泛的缺失,并限制了杂合性的丧失。使用polθ进行基因组保护的成本是,通常在维修部位删除或添加一些核苷酸。polθ的失活通常会增强细胞对DNA链破裂化学物质和辐射的敏感性。由于某些同源重组 - 有缺陷的癌症依赖于Polθ的生长,因此Polθ的抑制剂可能在治疗此类肿瘤中很有用。
将聚合物和聚合物复合材料用于包装应用是包装中最重要的研究领域之一。本期《聚合物》的本期旨在收集有关该主题的尖端原始研究论文,并评论聚合物和聚合物复合材料在包装中的应用。Research may touch on areas such as: - Active packaging techniques and polymers - Food safety and packaging materials - Intelligent packaging materials and application - Simulation and analysis of cushion materials - Mechanics of packaging - Water-soluble packaging materials and application - Self-clean packaging materials and application - Other functional packaging materials and application
1化学工程系,哥伦比亚大学,纽约,纽约,美国。2美国南卡罗来纳州哥伦比亚大学的化学与生物化学系,美国南卡罗来纳州。3 Wasit University,Hay al-Rabea,Kut,Wasit,Wasit,伊拉克52001。 4物理研究所,约翰内斯·古腾堡大学Mainz,Staudingerweg 7,D-55128,德国Mainz。 5化学工程系,马萨诸塞州理工学院,剑桥,马萨诸塞州02139,美国。 6克里特郡材料科学技术系,以及希腊赫拉克里翁的电子结构与激光研究所。 7UniversitätderBundeswehrMünchen,InstitutfürAngewandtePhysik und Messtechnik LRT2,Werner-Heisenberg- Weg 39,Neubiberg D-85577,德国。 8化学工程系,意大利博洛尼亚大学,博洛尼亚大学。 9 LaboratoireLéonBrillouin(LLB),CEA/CNRS UMR 12,CEA SACLAY,91191,GIF/YVETTE CEDEX法国。 10机械工程与材料科学系,生物医学工程,化学与物理,杜克大学,美国北卡罗来纳州达勒姆大学。 11 Laboratoire Gulliver,CNRS UMR 7083,ESPCI PARIS,PSL研究大学,法国75005,法国。3 Wasit University,Hay al-Rabea,Kut,Wasit,Wasit,伊拉克52001。4物理研究所,约翰内斯·古腾堡大学Mainz,Staudingerweg 7,D-55128,德国Mainz。5化学工程系,马萨诸塞州理工学院,剑桥,马萨诸塞州02139,美国。6克里特郡材料科学技术系,以及希腊赫拉克里翁的电子结构与激光研究所。 7UniversitätderBundeswehrMünchen,InstitutfürAngewandtePhysik und Messtechnik LRT2,Werner-Heisenberg- Weg 39,Neubiberg D-85577,德国。 8化学工程系,意大利博洛尼亚大学,博洛尼亚大学。 9 LaboratoireLéonBrillouin(LLB),CEA/CNRS UMR 12,CEA SACLAY,91191,GIF/YVETTE CEDEX法国。 10机械工程与材料科学系,生物医学工程,化学与物理,杜克大学,美国北卡罗来纳州达勒姆大学。 11 Laboratoire Gulliver,CNRS UMR 7083,ESPCI PARIS,PSL研究大学,法国75005,法国。6克里特郡材料科学技术系,以及希腊赫拉克里翁的电子结构与激光研究所。7UniversitätderBundeswehrMünchen,InstitutfürAngewandtePhysik und Messtechnik LRT2,Werner-Heisenberg- Weg 39,Neubiberg D-85577,德国。8化学工程系,意大利博洛尼亚大学,博洛尼亚大学。9 LaboratoireLéonBrillouin(LLB),CEA/CNRS UMR 12,CEA SACLAY,91191,GIF/YVETTE CEDEX法国。10机械工程与材料科学系,生物医学工程,化学与物理,杜克大学,美国北卡罗来纳州达勒姆大学。11 Laboratoire Gulliver,CNRS UMR 7083,ESPCI PARIS,PSL研究大学,法国75005,法国。
Hope A. Tanis是1:2.3.4,Anna S.E.1,2,3,5,5,Ben Weisbur 7,2,3,Angli Xue 12,13,Michael Gray 12.13和Andre L.M. Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,1,2,3,5,5,Ben Weisbur 7,2,3,Angli Xue 12,13,Michael Gray 12.13和Andre L.M. Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,1,2,3,5,5,Ben Weisbur 7,2,3,Angli Xue 12,13,Michael Gray 12.13和Andre L.M.Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,Reiz 3,14,Jonathan Margoliash 15,John Marshall 1:2,3,Bakiris Vivian 3:14,12:14,Stuart I. Alexander 4.24 4.24,Owen M. Siggs 1,2,3,Hannah R.Nicholas 1:2,3,1:2,3,1:2,3,1:2,3,1:2,3,3,2,3,2,3,2,3,2.2,3,2,
目的:本研究旨在调查FUT2基因(RS1047781,RS601338)的多态性与FUT3基因(RS3745635,RS28362459)之间的关联与Zhuang Guangxi的Zhuang Guangxi人群的炎症(IBD)的易感性。方法:从113名Zhuang患者(41例克罗恩病[CD] [CD]和72例溃疡性结肠炎[UC])和120名HAN患者(42例使用CD和UC的78例)中收集肠粘膜组织,所有这些患者均与IBD和106 ZHUANG和119 HAN不相关的IBD和诊断为119 Han Han and National and Neftress and and and and All Indection shancement and Neftrant and and and and and and national and Neftran Indribectrans。DNA。FUT2基因多态性(RS1047781,RS601338)和FUT3基因多态性(RS3745635,RS28362459)。PCR产物片段,并使用GenBank数据库进行了序列分析。结果:Zhuang UC患者组的FUT2 RS1047781多态性的基因型和等位基因频率与对照组中的频率显着不同(p <0.05)。同样,与对照组相比,在Zhuang UC和CD患者组的FUT3 RS3745635多态性的基因型和等位基因频率中观察到显着差异(P <0.05)。在Zhuang CD患者和对照组之间的FUT2 RS1047781的基因型和等位基因频率中没有发现统计学上的显着差异(P> 0.05)。关键字:岩藻糖基转移酶2,岩藻糖基转移酶3,炎症性肠病,IBD,溃疡性结肠炎,UC,Crohn'disease,CD此外,在Zhuang UC和CD患者组和对照组之间的fut2 rs601338和FUT3 RS28362459的基因型和等位基因频率中没有明显差异(P> 0.05)。结论:在广西Zhuang人口中,FUT2 RS1047781和FUT3 RS3745635多态性可能与IBD相关,而FUT2 RS601338和FUT3 RS28362459多态性可能不会显示这种关联。
聚合物也已成为有机热电学的潜在候选物,[7,8]有可能提供柔性,大面积和低成本的能源产生或加热 - 可吸引人的应用,例如,可穿戴能量收获,目前是传统的脆性和通常的毒性或稀有毒性或稀有层次的材料,这些材料目前是不可能的。ther- moelectric材料通过优异ZT = S2σT /κ的无量纲数进行评估,其中S,σ,T和κ分别代表塞贝克系数,电气有效性,绝对温度和热电导率。大多数连接的聚合物的特征是低κ值,从本质上有助于高ZT。通过P型共轭聚合物(例如ZT> 0.25)(PEDOT)(PEDOT)(pEDOT)等最广泛的热电研究证实了这一点。[9,10] P型和N型热电材料的性能应在任何实际应用之前彼此配对。ever,基于N型共轭聚合物的热电设备在功率因数方面仍然远低于其P型对应物(s2σ)。[11,12]因此,有效的发展
随着高级电子设备和电源系统的快速开发,具有高能量密度和功率密度的能源存储系统变得尤为重要。电源设备的能源存储系统主要包括超级电容器,可充电电池和燃料电池。特别是,新兴的可穿戴电子设备需要灵活且可拉伸的储能设备。聚合物由于其出色的机械强度,柔韧性,耐用性和低成本而广泛用于柔性储能设备中,作为聚合物电极,固态电解质,分离器和导电线。此外,聚合物的机械,电和电化学性能可以通过合适的填充剂在功能上修饰以满足不同的需求。