在流动中已经进行了几种PISA制剂,并且特别有吸引力的广泛研究的配方基于块共聚物聚合物聚合物聚合物聚丙烯酰胺 - 丙烯酰胺 - 丙烯酰胺(丙烯酰胺)(PDMAM-PDAAM)。16 - 20这个全丙烯酰胺系统促进了对聚合物合成的“超快”方法,将反应时间降低至10分钟。此外,以前已经为该系统提供了在线分析的力量,因此NMR可以获得高分辨率动力学数据。 18和Guild等。使用在线小角度X射线散射(SAXS)来监视粒径的演变。21在后一种技术的情况下,访问此类(通常是基于设施的)仪器的仪器是有限且昂贵的,并且自动数据处理需要在通常访问有限的软件接口中进行复杂的工作流程。因此,萨克斯州当前有限的效用用于闭环优化。相反,虽然较少的全面信息(尤其是对于更复杂的形态),但动态光散射(DLS)提供了一种更方便,更容易访问的粒子方法 - 具有自动数据处理,并且以明显的可观的成本来表征。dls在一系列系统的流量中已被证明,要么通过计算22 - 27期间的颗粒运动,要么通过停止流量的方法,28
对聚合物生产过程的可持续性评估对于评估其环境,社会和经济影响至关重要,但研究仍然很差。本章旨在提高学术界,工业和民间社会对此问题的研究人员和读者的认识,以及评估聚合物绿色的一些简单明了的方法。到此为止,它始于减少聚合物废物的概述,然后是减少产生的废物的主要方法。然后,它在更多详细信息中描述了如何随时可用的绿色指标,例如环境因素(电子因素),可以帮助评估制造过程和聚合物产品,并确定可以进行改进的领域。然后,它描述了可以与E-因子一起使用的方法,以更好地评估生产过程的可持续性,同时还显示了与这些方法相关的局限性/挑战。提出了来自生物质的聚合物发育的主要方法,然后重点介绍了广泛使用的木质素衍生的单体和聚合物(例如香草蛋白)的示例的电子因素计算,以及左旋葡萄糖剂衍生的单体剂和聚合物的快速发展的领域。还提供了改善(可持续)聚合物化学领域的未来方向。
聚合物复合材料(PC)的多功能性不再隐藏,因为这些几乎在当代社会的每个领域中都发现了应用程序,包括电子电路零件和广泛的家庭配件。聚合物复合材料由基质聚合物组成,该基质聚合物嵌入了多个连续的,小长度纤维中的聚合物基质中。除此之外,还添加了导电的聚合物作为填充物作为填充物。在本研究中,讨论了聚合物复合材料的发展,特征,生产和应用。 涉及聚合物复合材料的保暖塑料或热塑性塑料。 碱基聚合物的特性在用添加剂和提高强度,刚度和断裂韧性的增强方面得到了极大的增强。 除了加工参数以外,用于制造复合材料的制造过程极大地影响了最终产品的特征。 PC在汽车,航空,海洋,运动器材,生物医学仪器和电子电路板制造业中找到应用。 用于微电子应用的填充加固聚合物复合材料的巨大潜力是本研究的重点。 热塑性塑料和热固性聚合物的复合材料被用作包装材料,可在运输过程中增强包装产品的安全性。 导电聚合物复合材料作为温度传感器,断路器和可重复的熔断器找到应用。在本研究中,讨论了聚合物复合材料的发展,特征,生产和应用。涉及聚合物复合材料的保暖塑料或热塑性塑料。碱基聚合物的特性在用添加剂和提高强度,刚度和断裂韧性的增强方面得到了极大的增强。除了加工参数以外,用于制造复合材料的制造过程极大地影响了最终产品的特征。PC在汽车,航空,海洋,运动器材,生物医学仪器和电子电路板制造业中找到应用。用于微电子应用的填充加固聚合物复合材料的巨大潜力是本研究的重点。热塑性塑料和热固性聚合物的复合材料被用作包装材料,可在运输过程中增强包装产品的安全性。导电聚合物复合材料作为温度传感器,断路器和可重复的熔断器找到应用。聚合物复合材料具有良好的热导率和所需的电气和介电特性,可增强其对微电动功能的适用性。
聚合物衍生陶瓷 (PDC) 是一种新型的先进结构功能集成材料,具有独特的结构和可调节的物理化学性质,可激发在热防护、环境修复、能量存储和转换、微波吸收/屏蔽等领域的各种应用的发展。静电纺丝、冷冻铸造和增材制造等先进制造策略促进了跨多个长度尺度的复杂结构的设计。本期特刊旨在介绍 PDC 材料的最新发现,以强调其设计、合成、制造、表征和应用方面的良好趋势;我们的最终目标是实现基础理论与工程应用的共存、化学成分与多尺度结构的集成以及化学、材料科学、力学和机械工程等跨学科领域的合作。本期特刊的范围涵盖分子化学、先进加工和成型方法、聚合物到陶瓷的转化和尖端 PDC 应用方面的进展。
摘要 目的:确定白细胞介素 (IL)-10 基因 -592 C/A 多态性与 2 型糖尿病 (T2DM) 患者糖尿病肾病 (DNP) 之间的关联。研究设计:比较观察研究。研究地点和持续时间:巴基斯坦拉合尔梅奥医院和爱德华国王医科大学肾脏病科(与生物化学和生物医学科学高级研究中心 (ARCB) 合作),2021 年 1 月至 12 月。方法:该研究包括 282 名患有 T2DM ≥5 年且年龄≥40 岁的患者。患有和不患有 DNP 的患者分别分为 A 组和 B 组(每组 n = 141)。样本采集后,首先从全血中提取脱氧核糖核酸(DNA),然后通过特异性引物进行扩增,最后通过聚合酶链式反应和限制性片段长度多态性(PCR-RFLP)方法进行基因分型。使用中位数和四分位距(IQR)描述偏态数据,使用频率描述分类数据。使用Mann-Whitney U检验进行数据组间比较。使用卡方检验建立关联。结果:A组患者的中位年龄为50.0(12)岁,B组患者的中位年龄为54.0(11)岁。A组男女性分布为39(27.7%)/ 102(72.3%),B组男女性分布为49(34.8%)/ 92(65.2%)。IL-10基因-592 C / A多态性在A组72(51.0%)中出现的频率高于B组63(44.7%),但无统计学意义(p = 0.283)。结论:本研究表明,T2DM患者IL-10基因-592位点的单核苷酸C / A多态性不会影响(增加/减少)其患DNP的易感性。
聚合酶链式反应 (PCR) 是一种功能强大且灵敏的 DNA 扩增技术 (1)。Taq DNA 聚合酶是一种广泛用于 PCR 的酶 (2)。以下指南旨在确保使用 NEB 的 Taq DNA 进行 PCR 成功
摘要:自20世纪80年代以来,利用微流体技术生产简单(微球)和核壳(微胶囊)聚合物微粒(通常称为微胶囊化)一直是多项研究的重点。由于其特性可控、可调,且产率可达100%,因此该工艺快速、经济、高效。然而,其绿色环保性、可持续性和可扩展性仍不明确,需要加强该领域的认知和教育。微流体技术生产工艺的可持续性可以基于三大支柱实现/讨论:(i) 废物产生,(ii) 所用溶剂,以及 (iii) 原材料。另一方面,尽管已有多篇论文报道了这些工艺的放大,即并行设置数百或数千个微流控芯片,但据我们所知,尚未探讨这种放大工艺的可持续性。本意见书强调了微流体封装工艺的优势、根据上述支柱 (i-iii) 的绿色性以及在保持其可持续性的同时扩大其规模所需的考虑因素。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:kremer-- gg(kg)聚合物模型是研究分子动力学模拟中通用聚合物特性的标准模型。它的受欢迎程度归功于其简单性和计算效率,而不是代表特定聚合物物种和条件的能力。在这里,我们表明,通过调整链条态,可以使KG模型适应实际聚合物的融化。特别是,我们为各种商品聚合物提供了从kg到SI单位的映射关系。实验和kg熔体之间的连接是在库恩量表(即,从化学特定的小规模到通用大尺度行为的交叉量表上建立的。我们希望库恩尺度映射的kg模型能够忠实地代表以大型构象统计和灵活聚合物的动态为主的普遍特性。特别是,我们观察到我们KG模型的纠缠模量与目标聚合物的实验模量之间的良好一致性。
聚合酶链式反应 (PCR) 是一种功能强大且灵敏的 DNA 扩增技术 (1)。Taq DNA 聚合酶是一种广泛用于 PCR 的酶 (2)。以下指南旨在确保使用新英格兰