摘要:本研究的目的是检查50/50聚丙烯/聚酰胺6(IPP/PA6)系统在密封流条件下模制的系统,无论是在其原始状态下还是被两种不同的界面剂修饰之后。这项研究提供了两个主要见解。首先,它集中在接近相位反转的聚合物混合物上。其次,它研究了使用两种不同类型的界面剂(源自聚合物废物)来增强IPP和PA6之间的兼容性的影响。动态机械分析(DMA)已被用来实现这些目标。重要的是要注意,对50/50 IPP/PA6系统的研究是先前研究中预测的至关重要的重点,在此研究中,使用Box -Wilson设计(DID)在IPP/PA6二进制系统上的整个组合范围内评估了一系列的机械性能。因此,两个界面修饰符,即琥珀酸酐(SA)植物的无动物多丙烯与末端,侧面和桥接SA移植物(App-SASA)和琥珀酰 - 氟氟氟众类(SF)和桥梁琥珀酸氨基苯甲酸(SF),琥珀酸琥珀酸无水无水疗法植物植入了actactic atactic atactic Polopropopopopopopopopopopopopopopopopomylene(App-Sfsa),已使用。作者获得并表征了这些药物。在作者进行的先前研究中,混合物中使用的这些试剂的数量被确定为关键坐标。选择的加工方法(在限制条件下的压缩成型)被选择以最大程度地减少对新兴形态的任何方向效应。所有特征过程均在通过轮廓加工处理的样品上执行,以保留混合形态从加工阶段出现。蜡和萨克斯同步器测试的结果得出结论,在整个组成范围内,在混合物中,IPP或PA6的晶体形态没有变化。这些发现,并且长期适合我们正在讨论的五十/五十个混合物的PP晶相,将支持当前的DMA研究。最后,即使在这种不利的情况下,这些界面修饰符的效率也得出了结论。
摘要:细菌纤维素(BC)是一种高度纯的多糖生物聚合物,可以由各种细菌属产生。尽管卑诗省缺乏功能性能,其孔隙率,三维网络和高比表面积使其成为功能复合材料的合适载体。在本研究中,从康普茶饮料中分离出产生BC的细菌,并使用分子方法鉴定。在四天和七天后在静态条件下生产两组BC水凝胶。之后,将两个不同的合成途径应用于BC功能化。第一种方法暗示使用浸入技术掺入了先前合成的HAP/TIO 2纳米复合材料,而第二种方法包括在反应混合物中HAP/TIO 2纳米复合材料合成过程中BC的功能化。主要目标是找到获得功能化材料的最佳方法。物理化学和微结构特性。通过拉伸试验和热重分析检查了进一步的性质,并通过总板数测定法评估了抗菌活性。结果表明,使用这两种方法成功地将HAP/TIO 2成功纳入了BC水凝胶中。The applied methods of incorporation influenced the differences in morphology, phase distribution, mechanical and thermal properties, and antimicrobial activity against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Proteus mirabilis ( ATCC 12453 ), and Candida albicans (ATCC 10231).可以建议在适合疾病扩散的环境中进行进一步开发和应用。
1土木和机械工程学院,里加技术大学,拉脱维亚里加,里加街6B,里加技术大学。 inga.lasenko@rtu.lv(i.l.) 2 Netzsch仪器,波兰克拉科夫的Halicka 9,31-036; hilary.smogor@netzsch.com 3环境遗传学实验室,生物学研究所,生物学学院,拉脱维亚大学,耶尔加瓦斯街1号,LV-1004拉脱维亚,拉脱维亚; valters.gobins@lu.lv 4UniversitédeTechnologie deCompiègne,Roberval(力学,能源和电力),中心De Recherche Royallieu -CS 60319,60203Compiègnegnegne gne gne gne gne gne cedex,法国; alaa.kobeissi@utc.fr 5塔林理工大学机械和工业工程系,Ehitajate Tee 5,19086,塔林,爱沙尼亚; dmitri.goljandin@taltech.ee *通信:jaymin.sanchaniya@rtu.lv1土木和机械工程学院,里加技术大学,拉脱维亚里加,里加街6B,里加技术大学。 inga.lasenko@rtu.lv(i.l.)2 Netzsch仪器,波兰克拉科夫的Halicka 9,31-036; hilary.smogor@netzsch.com 3环境遗传学实验室,生物学研究所,生物学学院,拉脱维亚大学,耶尔加瓦斯街1号,LV-1004拉脱维亚,拉脱维亚; valters.gobins@lu.lv 4UniversitédeTechnologie deCompiègne,Roberval(力学,能源和电力),中心De Recherche Royallieu -CS 60319,60203Compiègnegnegne gne gne gne gne gne cedex,法国; alaa.kobeissi@utc.fr 5塔林理工大学机械和工业工程系,Ehitajate Tee 5,19086,塔林,爱沙尼亚; dmitri.goljandin@taltech.ee *通信:jaymin.sanchaniya@rtu.lv
摘要:现代媒体经常将CAD/CAM技术描绘成牙齿假体的制造中广泛使用。本研究对CAD/CAM(计算机辅助设计/计算机辅助制造)聚合物的机械性能和生物兼容性进行了比较分析,以及通常在假体牙科中使用的常规聚合物。随着牙科实验室和实践中CAD/CAM技术的采用越来越多,了解物质特性的差异对于假体治疗计划中的明智决策至关重要。通过对文献和经验数据的叙事回顾,本研究评估了与传统聚合物相比,CAD/CAM/CAM聚合物的机械强度,耐用性,美观和生物相容性。此外,它研究了这些发现对临床结果和假肢修复的长期成功的影响。结果为CAD/CAM聚合物的优势和局限性提供了宝贵的见解,向临床医生和研究人员通报了他们对各种牙科假体应用的适用性。这项研究强调了CAD/CAM聚合物在机械性能,生物相容性和假体牙科的美学方面的相当优势。CAD/CAM技术提供了提高的机械强度和耐用性,有可能增强牙齿假体的长期性能,而这些聚合物的生物相容性使它们适合于广泛的患者人群,从而降低了不良反应的风险。这些发现对牙科技术人员和牙医的实际含义非常重要,因为了解这些物质差异可以量身定制的治疗计划可以满足个人的患者需求和偏好。将CAD/CAM技术集成到牙科实践中可以导致更可预测的结果,并提高患者对假体修复体的满意度。
摘要:用于操纵封装活跃成分持续释放的聚合物复合材料在许多实际应用中受到了极大的追捧;特别是,经常探索水不溶的聚合物和核 - 壳结构,以操纵在延长的时间段内药物分子的释放行为。在这项研究中,电纺芯壳纳米结构被用来制定全新的策略,以量身定制不溶性聚合物(乙基纤维素,EC)的空间分布(EC)和溶剂聚合物(聚乙烯基 - 吡咯酮,PVP),从而在其内部构成了纳米型的均可进行的行为,从而表现出行为的行为。 (FA)。扫描电子显微镜和透射电子显微镜评估表明,所有制备的纳米纤维均具有无珠或纺锤体的线性形态,并且同轴过程中的纳米纤维具有明显的核心 - 壳结构。X射线衍射和减弱的总反射率傅立叶变换红外光谱测试证实,FA与EC和PVP具有良好的兼容性,并以无定形状态的所有纳米纤维呈现。体外溶解测试表明,EC的根本分布(从外壳到核心减小)和PVP(从壳体到核心的增加)能够在操纵FA的释放行为中发挥重要作用。一方面,核壳纳米纤维F3具有均匀的复合纳米纤维F1的优点,其较高的EC含量是从壳溶液制备的,以抑制初始爆发释放,并提供较长的持续释放时间。另一方面,F3具有纳米纤维F2的优势,其PVP含量较高,从核心溶液制备以抑制负尾巴释放。关键要素是水渗透率,由可溶性和不溶性聚合物的比率控制。基于核心壳结构的新策略铺平了一种开发具有异质分布的各种聚合物复合材料的方法,以实现所需的功能性能。
摘要:纳米技术是基于植物的疗法的最新方向之一。慢性静脉疾病通常易于长期和侵入性治疗。这项研究的重点是从Sophorae Flos(Se),金缆果(CE)和Ginkgo bilobae Folium(GE)中纳入植物提取物,其中包括PHB和PLGA聚合物的构建,及其物理化学表征作为在复杂的治疗产品开发中可能使用的初步阶段。样品是通过石油 - 水乳化和溶剂蒸发技术制备的,导致悬浮液具有较高的可扩展性,pH值为5.5。ATR-FTIR分析揭示了与碱基成分相同的区域的拉伸振动(O-H,C = O和C-H)在对称和非对称甲基和甲基中的C-H),但转换为高或低的波维因和吸收剂,并强调了提取物/提取物之间的累积的形成。通过XRD分析证实,获得的制剂处于无定形相。AFM分析强调了提取物 - 聚合物纳米成型的形态特征。可以注意到,在基于SE的制剂的情况下,SE-PHB和SE-PLGA组成的主要特性是形成随机大(SE-PHB)和较小的均匀(SE-PLGA)颗粒的形成。此外,在Se-PhB-Plga的情况下,这些颗粒倾向于聚集。对于基于CE和GE的配方,主要的表面形态是它们的孔隙率,通常有小毛孔,但在某些情况下(CE-和GE-PHB)观察到较大的空腔。在以下样品中发现了(8 µm×8 µm)等级处的最高粗糙度值:CE-PHB 此外,通过热重分析,评估了压缩袜基质中的浸没,该基质在以下顺序上有所不同:Ce-Polymer> se-polymer> se-Polymer> ge-Polymer。 在结论中,制备了九种植物提取物 - 聚合物纳米构造,并初步表征(通过先进的理化方法)作为进一步优化,稳定性研究以及可能在复杂药品中使用的起点。此外,通过热重分析,评估了压缩袜基质中的浸没,该基质在以下顺序上有所不同:Ce-Polymer> se-polymer> se-Polymer> ge-Polymer。在结论中,制备了九种植物提取物 - 聚合物纳米构造,并初步表征(通过先进的理化方法)作为进一步优化,稳定性研究以及可能在复杂药品中使用的起点。
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能未经稳定性测试,应仅用作建议的起点。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。对于超出 Lubrizol Advanced Materials, Inc. 直接控制范围的任何材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于对适销性和特定用途适用性的暗示保证。本文所含内容不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。Lubrizol Advanced Materials, Inc. 是 The Lubrizol Corporation 的全资子公司。Soluplus® 是 BASF 的注册商标,AFFINISOL™ 是 International Flavors and Fragrances Inc. 或其附属公司的注册商标。
a 丹麦哥本哈根大学理学院植物与环境科学系 b 西北农林科技大学农学院农业部西北旱区玉米生物学与遗传改良重点实验室,陕西杨凌 c 南京财经大学食品科学与工程学院食品软物质结构与先进制造实验室/现代粮食流通与安全协同创新中心/粮油质量控制与加工重点实验室,南京 210023 d 瑞典农业科学大学植物育种系,PO Box 101,SE-23053 Alnarp,瑞典 e Bertoft Solutions,Gamla Sampasv ¨ agen 18,20960 Turku,芬兰 f 普渡大学食品科学系,西拉斐特,美国 g 奥胡斯大学农业生态学系,Flakkebjerg,丹麦 h Plantcarb Aps,丹麦韦兹拜克
fle xicol pol ymers是委员会的委员会,在成本上,效果,效率,E-e-e-e-e-Ce-co-Ce ce Specialty Products的制造业环境。 Our offerin gs encompa ss a syner gist ic range of Emul sion, Po lyme rs, a nd Specia lty C hem ical s, all con soli dated under on e roof.w e h v e mecticu conticu curat curat o y y ur产品组合是通过大量的研究和开发工作将Glo Bast-i n-c Lass技术授予的。强烈强调向后和向前集成,将这种战略方法进一步加强,将我们定位为具有成本效益的解决方案提供商。