从2023年生产的440万吨基于生物的聚合物(CA)生产的基于生物纤维素的聚合物,基于生物的含量为50%和环氧树脂含量,基于生物的含量为45%,在基于生物的生产的一半中,为24%和30%。,其次是100%基于生物的聚乳酸(PLA),其中11%,聚酰胺(PA)(基于Breio)的含量为8%和30%的基于生物的聚氨酯(PUR)为7%。聚乙烯(PE)(可提供100%和30%的基于生物的含量)和聚三甲基三苯二甲酸酯(PTT)(基于生物生物的31%)的份额为6和5%(图2)。聚(丁二醇 - 二苯二甲酸丁二酸)(PBAT),聚对苯二甲酸酯(PET),聚羟基烷酸(PHA)和含淀粉的聚合物化合物(SCPC)的份额均低于5%。Aliphatic polycarbonates (APC; linear and circular), casein polymers (CP), ethylene propylene diene monomer rubber (EPDM), polybutylene succinate (PBS), polyethylene furanoate (PEF) and polypropylene (PP) had a share below 1 % of the total bio-based polymer production volume and are not depicted (see Overview of bio-based基于生物的内容的聚合物特性)。
抽象聚合物在纺织工业的多个领域中起着影响力。纺织品研究集中在基于聚合物以及涂有聚合物的纺织织物的纤维/织物生产上。聚酯,聚酰胺,多酰胺,聚苯胺,聚丙烯硝基烯,聚氨酯,聚丙烯酰胺,聚乙烯氯,聚乙烯基氯,聚乙烯基氟化物,聚乙烯基醇,人造丝等,已指定为纺织品服务聚合物。聚合物是生产纺织品的必要化学物质。聚合物在从纤维制造到纺织品和饰面的纺织品制造的每个步骤中都使用。不同的纳米颗粒和纳米碳也已在聚合物复合材料中用于纺织品相关目标。聚合物和纺织品材料的可能性和组合是无限的,具体取决于最终使用的目的。关键字:聚合物,纺织品生产,纺织色彩,纳米颗粒
可以获得接近真实的数据。对其摩擦学特性的研究以及主要因素的正确选择将有助于在使用实验室和生产工厂进行模拟时提供准确的输入数据。增加接触元件和系统的使用寿命的方法之一是使用聚合物,金属聚合物材料和涂料。这样的材料结合了具有良好抗摩擦,抗腐蚀,抗衣和其他现代聚合物特性的金属固有的高机械强度[1-10]。三维印刷或3D打印作为现代技术的快速开发和改进为建造高科技材料和三维固体细节提供了机会。该技术本质上是不同的,与传统技术相比具有许多优势。最传统的建模,创建和制造方法,例如铸造,锻造,转弯,铣削等。对于大多数用户而言,付出了昂贵,劳动力且耗时[11-16]。在工作[17,18]中,作者对3D打印技术中使用的主要材料进行了研究和分析。根据制造商,分销商和市场研究,主要材料是PLA(聚乳酸),PETG(聚乙烯三甲酸酯)和ABS(丙烯腈丁二烯苯乙烯)。其他一些材料是ASA,TPE,TPU,TPC,PA,PC,PP,PEI,PVA,PVA,PVC,PEEK,PEEK,HIPS等。关于3D聚合物和复合材料的大多数研究都集中在其机械性能上,该特性约占所有研究的12%。这些研究中只有3%与它们的摩擦学特性有关[19]。在3D聚合物材料和复合材料领域的专业文献研究中对研究的研究表明,它们与寻找摩擦系数的依赖性以及对各种因素的磨损强度有关,例如正常负载,滑动速度,粗糙度,粗糙度,聚合物的微生物,表面层的显微镜,表面层,厚度和厚度为20-25层[25-25]。结果有时是矛盾的,它们的比较与困难,有时甚至是不可能的,这是由tribotesters的不同方法和运动方案引起的。摩擦和磨损的摩擦学过程
1化学技术学院Kaunas技术学院环境技术系,LT-50254 Kaunas,立陶宛; tamari.mumladze@ktu.lt(t.m.); gintaras.denafas@ktu.lt(G.D。)2化学与环境技术系,佐治亚州库塔西岛4600号库塔西岛Akaki Tsereteli州立大学技术工程学院3材料研究与测试实验室,Lithuanian Energy Institute,Lithuanian Energy Institute,LT-4444444403 KAAUNIA,LITHUANIA,LITHUANIA,LITHUANIA; vidas.makarevicius@lei.lt(V.M.); rita.kriukiene@lei.lt(R.K.)4机械与工业工程系,塔林技术大学,19086年,爱沙尼亚塔林; maksim.antonov@taltech.ee 5,维尔纽斯·盖迪米纳斯技术大学环境保护与水工程系,立陶宛维尔纽斯维尔尼乌斯; saulius.vasarevicius@vilniustech.lt *通信:agne.sleiniute@ktu.lt
摘要:通过使用绿色技术(例如超临界二氧化碳(SCCO 2)),亲和力聚合材料的设计和开发是一个迅速发展的研究领域,在各种领域,包括分析化学,药品,生物医学,能源,食物,食物和环境补救,包括大量不同领域的应用。这些亲和力的聚合物材料专门设计用于与靶分子相互作用,表现出高亲和力和选择性。SCCO 2的独特特性,它们既具有液体和气体样的特性又具有可访问的临界点,它为聚合物的合成和处理提供了环境友好,高效的技术。SCCO 2中亲和力聚合材料的设计和合成涉及多种策略。通常,将官能团或配体掺入聚合物矩阵中允许与目标化合物进行选择性相互作用。根据亲和力和选择性,单体类型,配体和合成条件的选择是材料性能的关键参数。此外,在这些策略中通常使用了与共聚合和表面修饰的分子印记,从而增强了材料的性能和多功能性。本综述旨在概述使用SCCO 2的亲和力聚合物材料设计的关键策略和最新进步。
摘要:在过去的二十年中,在为各种工业应用(包括人类和兽医医学)的可生物降解聚合物材料开发中取得了巨大进展。他们是常用的不可降解聚合物来应对全球塑料浪费危机的有希望的替代品。在使用或可能适用于兽医的可生物降解聚合物中是天然多糖,例如几丁质,壳聚糖和纤维素,以及各种多植物,包括聚(ε-丙酮酸),聚酯酸,聚乳酸,乳酸 - 乙酸 - 甘氨酸酸)和多羟基甲酸盐。它们可以用作组织工程和伤口管理中的植入物,药物载体或生物材料。它们在兽医实践中的使用取决于它们的生物相容性,对生命组织的惰性,机械耐药性和吸附特征。必须专门设计其目的,无论是:(1)促进新的组织生长并允许与活细胞或细胞增长因子进行控制的相互作用,(2)具有机械性能,可以在植入物应用时解决功能,还是(3)在将药物运送到其目标位置时将药物运送到吸毒者时,将药物输送到其目标位置。本文旨在介绍有关兽医生物降解聚合物研究的最新发展,并强调该领域的挑战和未来观点。
慢性肾脏疾病(CKD)是影响人群的最严重的非传染性疾病之一。在早期患者中没有明显的症状,直到威胁生命的前末期肾衰竭。因此,重要的是早期诊断CKD允许治疗干预和进展监测。在这里,使用氧化石墨烯/多胺 - - 胺 - - 胺 - 莫利 - - 甲基 - 甲基化的石墨烯/多胺 - 甲基化的成分(RGO/PDA-MIP)(RGO/PDA-MIP)制造技术,据报道了三种CKD生物标记物(即肌酐,尿素和人血清白蛋白(HSA))同时检测三种CKD生物标志物(即肌酐,尿素和人血清白蛋白(HSA))(RGO/PDA-MIP)制造新颖的新颖的表面构造。开发了具有不同脉冲伏安法(DPV)功能的多通道电化学POC读数系统,允许同时检测三个生物标志物,并结合表面MIP电极。这个传感平台在所有三个分析物中都以femtolor级别的水平达到了创纪录的低检测(LOD),其广泛检测范围涵盖了其生理浓度。临床验证是通过测量健康对照组和CKD患者的血清和尿液中的这些分析物来进行的。与医院获得的结果相比,平均恢复率为81.8–119.1%,而该平台更有效率,用户友好,需要更少的样品到分配时间,表明在资源限制的设置中以早期诊断和跟踪CKD的进展。
慢性肾病 (CKD) 是影响人群的最严重的非传染性疾病之一。早期患者没有明显症状,直到发展为危及生命的终末期肾衰竭。因此,早期诊断 CKD 非常重要,以便进行治疗干预和进展监测。本文报道了一种即时诊断 (POC) 传感平台,使用采用新型表面分子印迹技术制备的还原氧化石墨烯/聚多巴胺分子印迹聚合物 (rGO/PDA-MIP),可同时检测三种 CKD 生物标志物,即肌酐、尿素和人血清白蛋白 (HSA)。开发了一种具有差分脉冲伏安法 (DPV) 功能的多通道电化学 POC 读出系统,结合表面 MIP 电极,可同时检测这三种生物标志物。该传感平台对所有三种分析物的检测限 (LoD) 均达到创纪录的飞摩尔水平,检测范围广,涵盖了它们的生理浓度。通过测量健康对照者和 CKD 患者的血清和尿液中的这些分析物进行临床验证。与医院获得的结果相比,平均回收率为 81.8–119.1%,而该平台更具成本效益、用户友好性,并且需要的样本到结果时间更短,显示出在资源有限的环境中部署用于早期诊断和跟踪 CKD 进展的潜力。
(CAM)。材料和方法:通过使用两种应用:CAM分析和网络形成测定,通过IKOSA软件增强了经典的立体显微镜图像血管评估,评估血管分支电位,血管区域,管区域以及管长度和厚度。结果:两种基于胶原蛋白的支架都诱导了非炎性血管生成,但是非胶原支架诱导了严重的炎症,随后是炎症 - 相关的血管生成。血管分支点/感兴趣的区域(PX^2)和血管分支点/血管总面积(PX^2),呈指数增加,直到实验的第5天,证明了由3D胶原支架引起的持续且连续的血管生成过程。结论:与非胶原支架相比,基于胶原蛋白的支架可能更适合新血管化。本研究证明了CAM模型与基于AI的软件的潜力,用于评估生物材料中的血管化。这种方法可以帮助减少和替代生物材料预筛查中的动物实验。
摘要:近年来,相变材料(PCM)越来越受到关注,因为它们可以以明智和潜热的形式储存热能,并且它们用于高级技术解决方案,以保护可持续和废物能量。重要的是,大多数当前应用的PCM都是由不可再生来源生产的,其碳足迹与某些环境影响有关。但是,新型PCM也可以使用绿色材料设计和制造,而不会对环境产生略有影响。在这项工作中,描述了PCM应用中基于生物的聚合物的当前知识状态。生物基聚合物可以用作相变材料,以及PCMS封装和形状稳定化,例如纤维素及其衍生物,壳聚糖,木质素,明胶和淀粉。对最终PCM的属性及其在各个部门的应用潜力进行评估。已经提出了改善其热量存储特性以及赋予多功能特征的新型策略。还讨论了基于生物的聚合物如何在各个工业领域的新环境安全PCM的潜力中扩展。