摘要:Cu 0介导的原子转移自由基聚合(ATRP)在水性培养基中被扩展到二级胺 - 抑制甲基丙烯酸酯聚合物,并用聚([2-二甲基氨基]乙基甲基甲基甲基甲基甲基)(PDMAEMA)(PDMAEMA)(PDMAEMA)作为模型聚合物。通过增加停用Cu II物种的浓度,降低反应温度并将辅助卤化物浓度增加到1 m,在4小时内实现了均固定分子量分布(MWD)的聚合物。 MWDS与理论值表现出良好的一致性,多分散指数(a)低至1.14。此外,该反应系统显示出对溶解氧的显着耐受性,几乎没有观察到的聚合物在启动前而没有脱气而没有观察到的有害影响。在3.5的温和酸性pH下的合成表现出了活性端基的出色保留,如近量化转化时的链扩展所证明的,并将系统扩展到2-(二乙基氨基)甲基丙烯酸乙酯(Deaema)(Deaema)(Deaema)(Deaema)和2-(二异丙基)乙基乙酸乙酯(Diasopyly)(Dpaema)。这项工作提出了一种新的水性方法,用于用具有良好的MWD的第三级胺 - 吊剂聚合物快速合成。
使用MVR是熔体量速率(CM³/10分钟)MFI是熔体流量指数(G/10min)¶是聚合物熔体(G/CM³)的密度。这种转换允许在已知密度时变化使用MFI和MVR,从而在具有不同密度的材料之间使得对可容纳。评估回收物时,这特别有用,由于污染,降解或不同聚合物等级的混合而导致的密度可能会有所不同。但是,尽管MFI方便这些比较,但它们仅对聚合物的流量表征有限。两个指标中的每一个仅描绘了流曲线上的单个数据点,这些数据点在特定条件下得出,这些条件不模仿高剪切速率和典型的工业处理过程。在比较回收物时,这种限制尤其重要,因为这些材料可以在行为上表现出很大的变化,而行为并非仅由MFI捕获。
作为全球热过程技术的领先提供商,我们认为我们有责任和机会影响客户的可持续发展计划。干燥是资源密集型的,但它使我们能够开发量身定制的解决方案,以减少排放,温室气体,能源成本和废物。知道每个过程都是唯一的,我们使用验证的技术来适合您的特定应用程序。为了改善组织的生态足迹,我们提供服务来确定最佳解决方案并监控您的努力,以确保您的投资按预期运行并达到目标。您的成功是我们的目标。
摘要:本文的重点是基于石墨烯和天然聚合物(例如纤维素和壳聚糖)的导电纳米复合材料的开发。石墨烯是排列在蜂窝晶格中的单层碳原子,具有非凡的电气,机械和热性能,使其成为聚合物复合材料的吸引人填充物。但是,挑战在于有效地将石墨烯片分散在聚合物矩阵中。所介绍的工作探讨了将多糖链接枝到氧化石墨(氧化石墨烯)上的新策略,以改善其在纤维素和壳聚糖基质中的兼容性和分散性。将所得的复合材料与金或镍纳米颗粒掺杂,以进一步增强其电和催化特性。采用了详细的表征技术,包括光谱和微观方法,用于分析已发达的纳米复合材料的结构,形态和特性。论文分为三个主要部分:1)关于石墨烯,多糖及其生物复合材料的文献综述; 2)描述实验材料和方法; 3)对结果的科学讨论,以三个研究出版物的形式提出。研究结果表明,成功合成了具有提高兼容性和性能的导电纳米复合材料,为在电子,催化和电磁屏蔽等区域中应用这些可持续性和多功能材料开辟了新的途径。
lubrizol工程聚合物旨在改善各种消费和工业应用的产品性能和美学 - 从性能到鞋类到鞋类再到软管及其他。最近,我们的聚合物已用于EV充电系统电缆,电子和3D打印中。可能性几乎是无尽的。
4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。 摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。 但是,CP通常在循环稳定性和能量密度方面面临局限性。 最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。 本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。 通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。 本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。但是,CP通常在循环稳定性和能量密度方面面临局限性。最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。
摘要:皮层内微电极是研究和治疗神经系统疾病的宝贵工具。在很大程度上由于电极植入后发生的氧化应激和炎症反应,这些电极的信号质量会随着时间的推移而下降。为了缓解这种反应,我们使用了白藜芦醇,它是一种天然的抗氧化剂,通过减少氧化应激产生神经保护作用。这项研究在体内和体外比较了传统的白藜芦醇全身给药和本文介绍的新型环糊精聚合物 (pCD) 局部给药方法。pCD 在体外显示出长达 100 天的白藜芦醇释放,以及 60 天的自由基清除活性。体内结果表明,我们的 pCD 输送系统成功地将白藜芦醇输送到大脑,并在整个短期研究期间(最长 7 天)持续释放。有趣的是,与全身给药相比,皮层内探针植入部位的白藜芦醇代谢物浓度明显更高。总之,我们的试验结果为改善白藜芦醇输送以稳定长期神经接口应用的可能性提供了支持。
CheFEM 3 由 Composite Analytica 开发,是一款先进的软件工具,专为高级热机械分析而设计,重点关注聚合物基复合材料。CheFEM 3 具有先进的化学物理模拟功能和经过校准的热机械建模,为分析化学暴露场景、预测使用寿命和优化设备运营支出提供了一个可靠的平台。本文概述了 CheFEM 3,重点介绍了它能够减少大量暴露实验的需求,从而降低成本和环境影响。利用经过校准的三次状态方程和有限元方法,该软件可以准确预测关键材料特性,例如渗透性、耐化学性和机械响应。CheFEM 3 可作为独立应用程序运行,并与 Abaqus、Ansys 和 SolidWorks 等其他 FEM 软件包集成,在工作流程管理方面提供无与伦比的灵活性。 CheFEM 3 将成为严重依赖复合材料的行业的重要工具,为耐用、高性能结构的设计和维护提供强有力的解决方案。
该论文/论文是由Gary B.博士和Pamela S. Williams Honors College免费提供给您的,该学院是Ideaexchange@Uakron,Uakron是美国俄亥俄州阿克伦大学阿克伦大学的机构存储库。它已被威廉姆斯荣誉学院(Williams Honors College)纳入其中,由Ideaexchange@Uakron的授权管理员致敬研究项目。有关更多信息,请联系mjon@uakron.edu,uapress@uakron.edu。