BEE:能源效率局 CAPEX:资本支出 CERC:中央电力监管委员会 CGPs:自备发电厂 CKT:电路公里 CTU:中央输电设施 CT:电流互感器 DC:指定消费者 DISCOM:配电公司 DT:配电变压器 EA:能源审计师 EHT:超高压 EHV:超高压 EM:能源经理 FY:财政年度 HT:高压 HVDS:高压配电系统 KVA:千伏安 LT:低压 MoP:电力部 MU:百万单位 MW:兆瓦 NO:节点官员 OA:开放存取 OERC:奥里萨邦电力监管委员会 OPTCL:奥里萨邦输电有限公司 POC:连接点 PT:电压互感器 PVC:聚氯乙烯 PX:电力交易所 RE:可再生能源 RLDC:区域负荷调度中心 SDA:国家指定机构 SLD:单线图 SLDC:国家负荷调度中心 T&D:输配电 TPSODL:塔塔电力南奥里萨邦配电有限公司 XLPE:交联聚乙烯
基于液体金属(LM)的可拉伸印刷电路板的高密度互连(HDI)技术对于扩大其适用性至关重要。HDI技术提供了高分辨率的多层电路,具有高密度的组件,这是下一代神经探针以及超声波和传感器阵列所必需的。这项研究提出了一种使用激光雕刻的微凹槽的HDI技术,并在硅酮中使用保护性升力 - 聚乙烯醇(PVA)和随后的显微镜LM粒子喷雾沉积。这种方法实现了高分辨率的LM模式,并同时实现了组件的多层连接性和高密度集成,即实现HDI技术。使用可伸缩的0201 LED显示器证明,密度为每毫米2的六个铅和一个耳蜗植入物(CI)电极阵列。所证明的CI制造有可能以提高精度和吞吐量的植入物的全自动印刷电路板制造。植入豚鼠中的植入物表明,CI能够使用高质量的电气听觉脑干反应(EABR)和电气复合动作电位(ECAP)激活听觉神经元。此外,LM互连的U形横截面比正常矩形横截面具有更高的电路机械冲击力。
2018年全球3.48亿吨的全球塑料生产迅速导致了广泛的环境污染,尤其是在陆地生态系统中。本研究研究了农业土壤中的微塑料,令人震惊。≤5mm的颗粒被定义为微塑料,对地球环境产生不利影响。由于其生态重要性,土壤充当了重要的微塑料水槽,影响了土壤,植物健康和微生物活性。各种因素有助于农业土壤中的微塑性污染,包括塑料覆盖,肥料,农产品(青贮网,麻线),污水污泥,风化和其他间接过程。这些微塑料迁移,威胁土壤完整性和生物多样性。土壤微塑料的大小,体积分数和聚合物分析。常见材料包括聚乙烯,聚丙烯,聚酰胺,聚苯乙烯,聚氯化氯化物和聚酯。技术,包括光学显微镜和光谱,提取和分析微塑料。这项全面的审查要求对农业土壤中微塑料的生态影响提高人们的关注。它强调了管理塑料解决环境挑战的重要性。综合的环境评估强调了微塑料与土壤生态系统之间的复杂关系,提供了对潜在风险的见解,并提出了打击这种迫在眉睫的环境威胁的策略。
注释 市政府审查 所有拟建水管结构的完工坡度标高 管道的尺寸、类型和等级 直径为 3 英寸及更大的管道应为球墨铸铁 54 级管道和/或聚氯乙烯 (PVC) 管道,具体由公共服务部主任规定 衬垫应为 MDOT II 级沙子 位于路面下方或路面三英尺内的水管沟需要用压实沙子回填;使用的其他回填材料(如适用)不得含有大块粘土、碎片和岩石 提供所有水管结构的尺寸图。所有结构、水管和服务导线都应从两个已知点开始参考 英克斯特市 水的标准细节应作为计划的一部分附加其中 如果水管专用于城市(公共),则最小尺寸为 8 英寸 对于不在公共通行权内的现有或拟建公共水管,需要有地役权。地役权描述应包含在计划中。在签发 C of O 之前,应起草并执行地役权,获得批准,在韦恩县契约登记处登记,并将登记的地役权存入市书记官办公室
液体冷和咳嗽配方在存在或不存在Carbopol®聚合物的情况下评估了商用液体冷和咳嗽配方的体外粘膜粘附特性。Carbopol®聚合物包含水平有所不同,以确定随着时间的推移对制剂保留的影响。含有Carbopol®聚合物的配方的保留率明显高于不含Carbopol®聚合物的制剂(图5)。此外,以较高的聚合物浓度实现了更高的保留率。粘膜粘附增强含有Carbopol®聚合物聚乙烯醇的膜在药物配方中以膜以前已知,而Carbopol®聚合物表现出粘粘性特性。膜的粘膜受到交联的Carbopol®聚合物度的影响,含有Carbopol®971pNF聚合物的膜确保了更长的保留。膜的厚度影响了预期的粘膜粘附,较厚的膜显示出更好的保留率。在类似厚度的情况下,与基准PVA膜相比,含有Carbopol®971pNF聚合物的PVA膜显示出更长的保留率(图6)。90分钟后,PVA膜几乎被完全洗净,而含有PVA膜的Carbopol®聚合物即使在240分钟也保留了一定程度(图7)。
经手术、放疗、化疗、靶向治疗等治疗后仍不能得到有效控制的肺癌,临床上称为难治性肺癌(1)。目前对于难治性肺癌患者尚无有效的治疗手段,可用的治疗方法主要是对症支持治疗,或在复发或转移出现明显临床症状时给予姑息性抗肿瘤治疗,以减轻患者痛苦,提高生活质量(2,3)。支气管动脉化疗栓塞术(BACE)是难治性肺癌患者局部治疗方法之一(4~6)。随着栓塞材料的研发和应用,BACE治疗肺癌的有效率逐渐提高。但传统栓塞材料包括碘化油、明胶海绵颗粒、聚乙烯醇颗粒等,存在栓塞不完全和并发症发生率高等两大缺陷。载药微球作为一种新型栓塞材料,具有血管栓塞和局部缓释化疗药物的双重功能,在BACE治疗肺癌中取得了良好的临床效果( 7 , 8 )。本研究前瞻性观察了CalliSpheres药物洗脱微球(DEB)联合BACE(DEB-BACE)治疗难治性非小细胞肺癌(NSCLC)的疗效和安全性。
在这项研究中,在存在稳定剂聚乙烯醇(PVA)的情况下,通过SOL凝胶方法合成CuO NP,Cu-MNNC和Cu-Co NCS。这些纳米颗粒的特征是通过傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和X射线衍射(XRD)技术来表征。通过FTIR分析验证了PVA整合与纳米颗粒的键合的化学结构和存在。SEM研究表明,CuO NP,Cu-Mn NCS和Cu-Co NC的平均粒径分别为64.5、87.5和69.0 nm。此外,XRD分析还支持其纳米尺寸。分别针对2、2-二苯基-1-苯基羟基(DPPH)评估了抗氧化剂和酶抑制活性,分别为78.9、67.8和60.8 g/mL的IC 50值。抗氧化活性表明它们抑制了氧化代谢产物的作用。IC 50值是一种定量措施,揭示了在体外阻断生物学过程所需的某些抑制性化学物质的存在。生物学成分可能是一种酶,微生物或细胞受体。发现CuO NP,Cu-MN NCS和Cu-Co NC的酶抑制活性分别为18.5、23.7和34.5 UM。这些特征性能表明这些纳米复合材料具有生物医学应用。此外,它们可以有效地用于治疗目的。
纳米复合溶液。然后通过傅立叶变换红外光谱(FTIR)和紫外线可见光谱(UV-VIS)正确分析所获得的溶液。在FTIR光谱中,PVP和CUO的主要区别带很明显。一些频段的强度下降的事实表明,PVP和CUO内部的官能团之间正在进行有效的反应。一项光学研究表明,当Cu +2离子生长时,膜的透射率和能带隙缩水。这些结果表明,装有CuO纳米颗粒的PVP矩阵具有合适的结构和光学特性,可提高其潜在的工业用途,特别是在光学组件和设备中。此外,由于将透射率强烈降低至1%,因此,具有1.0 wt。%CUO的PVP/CUO纳米复合样品可以用作电磁频谱的紫外线,可见和近IR区域的阻滞材料。理论结果还表明,HOMO/LUMO带隙随CUO填充剂而降低,而总偶极矩(TDM)增加。这些发现表明了如何将实验和理论工作结合在一起,以更好地了解分子结构的相互作用,从而揭示了纳米结构的意外特性。
摘要 本研究为木塑复合材料的工业加工提供指导,重点研究其在摩擦下的行为,特别是当摩擦由与硬质合金的滑动接触引起时的行为。使用响应曲面法(RSM)探索摩擦系数与木塑复合材料类型、负载力和往复频率之间的相关性,并进行了一系列摩擦试验。通过方差分析(ANOVA)确定了每个因素及其双因素相互作用的显著贡献,显著性水平为 5%,同时使用响应曲面法研究了摩擦系数的变化趋势。木塑复合材料类型对摩擦系数的影响最大,其次是负载力和往复频率。建立了数学模型(CoF = − 0.10 + 0.09 ω − 0.02 f +0.01 F n − 0.01 ω f +2.38×10 − 3 ω F n − 2.00×10 − 4 F nf +0.11 ω 2 +2.96 f 2 − 1.04×10 − 4 F n 2 ),以准确预测此类复合材料在加工过程中摩擦系数的变化。根据优化结果,聚丙烯木塑复合材料应采用高速切削加工,而聚乙烯和聚氯乙烯木塑复合材料建议采用低速加工,以确保最低的摩擦系数。
摘要:在当前的研究中,壳聚糖(CS)和聚乙烯醇(PVA)使用的水凝胶是使用没有有毒交联剂的Freeze-Thaw方法生产的。磁性纳米颗粒(MNP)和槲皮素(QC)在合成水凝胶并使用冻干剂冷冻干燥后,将其添加到系统中。准备好的样品用于体外药物释放研究。QC,称为天然多酚,是支持其抗氧化作用的癌症治疗的有前途的候选人。然而,含有Fe3O4纳米颗粒的水凝胶具有高孔隙度和封装效率,使其成为药物加载和受控释放的方便载体。QC被封装在合成的CS-PVA-MNP中。使用扫描电子显微镜(SEM)可视化制备水凝胶的形态变化。使用傅立叶变换红外光谱(FTIR)测定合成样品的分子结构,而通过热重分析(TGA)评估其热稳定性。QC在包括Fe 3 O 4 MNP的水凝胶中的封装效率(EE)和药物加载效率(DLE)分别确定为93.40%和65.58%。在pH 5和pH 7.4处的QC的体外释放曲线证明了水凝胶的有效性。这些结果表明CS-PVA-MNPS-QC是预期递送的方便载体,并揭示了QC作为药物与癌细胞的潜力。